Abstract:
Two kinds of classic convective systems in and around Beijing are picked to investigate the lightning activities (observed by SAFIR3000) and the relationship between lightning and precipitation (retrieved from radar) during different thunderstorms. Lightning activity characteristics of a rainstorm and a hailstorm are analyzed and compared. Due to different microphysics and dynamic processes, there are significant differences in the discharge process within clouds, resulting in significant differences in corresponding lightning activities. The hailstorm has larger ratio of CG (cloud-to-ground) lightning, and the ratio of positive CG lightning is 0.311, comparing to 0.191 of the rainstorm.During the rainstorm, the intensity of convective precipitation is decreasing sharply when the lightning frequency reaches the highest value. The lightning frequency in this region can provide about 5-15 min warning time for the maximum rainfall intensity. In the early stage of hailstorm, rainstorm with short duration occurs, and the frequency of lightning reaches the peak when the hailstorm occurs, and then it declines as the hailstorm maintains. The hailstorm has larger ratio of CG lightning than the rainstorm. The main discharge area in hailstorm is higher than that in rainstorm, the temperature layer corresponded to the main charge region in hailstorm is lower than that in rainstorm. The total lightning frequency between convective precipitation's linear correlation coefficient is better in rainstorm than that in hailstorm.The linear correlation between lightning and precipitation in hailstorm is more complicated, because hailstorm has more complex dynamic and ice phase microphysics. These quantificational results can provide reference for applications of lightning data in severe weather warning and precipitation estimation.However, it's not certain whether all hailstorms have the similar lightning and precipitation relationships (the highest precipitation in the early stage of the hailstorms, and the total flash to reach the maximum in the hail stage). These results can be improved through further analysis when there are more observation cases.