Abstract:
The bright band is a layer of enhanced reflectivity due to melting of aggregated snow and ice crystals. The occurrence of a bright band causes significant overestimation in radar-based quantitative precipitation estimation (QPE). The bright band signature can be normally identified from vertical profiles of reflectivity (VPRs) of stratiform precipitation echoes and the freezing level height which is derived from radiosonde data. The VPRs correction is desirable to mitigate the bright band contamination and reduce the overestimation of the radar-based QPE. However, a well-defined bright band bottom, which is critical for the correction of bright band, is sometimes not found in VPRs. Fortunately, polarimetric variables, especially the correlation coefficient, can provide a much better depiction of vertical bright band structure than reflectivity.The volume scanning data of a C-band dual polarization radar from Beijing Meteorological Bureau, radiosonde data and measured rainfall data from ground rain gauge stations are used to test the methodology of the bright band identification and correction. Three bright band correction schemes including mean vertical profile of reflectivity (MVPR), apparent vertical profile of reflectivity (AVPR) and apparent vertical profile of correlation coefficient (AVPCC), which are derived from stratiform precipitation echoes, are applied to the reflectivity field in the given tilt, and radar-based QPEs are derived from the corrected reflectivity field based on traditional
Z-
R relations. Results indicate that the bright band top, peak and bottom can be easily identified from the volume scanning MVPR and the freezing level height, and most of bright band depths are between 0.8 km and 1.5 km. The AVPR and AVPCC schemes are shown to be more effective in mitigating the bright band contamination and reducing the overestimation of radar-derived QPE associated with the bright band than the MVPR correction. Corrected reflectivity fields are physically continuous in distribution, and the corrected radar-derived QPEs are close to the measured value of ground rain gauge stations.