Abstract:
The classification of geological hazards is very complicated for there being different methods according to different standards. Factors triggering geological hazards are divided into two categories:Internal and external. Internal factors mainly include geological and geomorphological factors, and external factors include precipitation, earthquake, volcanic eruption and human activities. The majority of the geological hazards are triggered by precipitation, especially heavy rainfall.Geological hazards including the debris flow, landslide and collapse triggered by rainfall are discussed. Geological hazard forecast plays a major role in the disaster risk reduction paradigm as cost-effective method to mitigate disaster damage. The geo-hazard forecasting mainly refers to the temporal and spatial warning in specific areas. Based on reviewing literatures related to rainfall-induced geological hazard prediction, related concepts are formulated, and previous researches are sorted and summarized. Afterwards, characteristics and application of the rainfall-induced geo-hazard prediction models are summarized, including the implicit statistics model, the explicit statistics model and the dynamic models. At present, the first-generation implicit statistic models considering precipitation characteristics are further developed into a second-generation explicit statistic models which consider rainfall factor, geology and geomorphology factors. Statistic models are widely used in the operational forecasting for their conciseness and convenience. However, the accuracy of the spatial and temporal simulating is limited because models can't simulate the physical mechanism of geological hazards. Geo-hazard early warning systems based on dynamic model can provide a better forecasting product with higher spatial and temporal resolution. The dynamic model is gradually developed from a slope stability model based on the theory of vertical infiltration to a coupled hydrological-geotechnical model.The geo-hazard forecasting model is the key of the early warning system. Lots of rainfall-induced geo-hazard early warning systems based on the statistic model have been set up in China. Meteorological models are used to forecast the rainfall in order to issue a warning with a given lead time. A complete geological hazards forecasting chain include the rainfall predicting, the disaster model, model results displaying, and the early warning releasing. The research foci of geological hazard forecasting have gradually expanded from the prediction model to the input of multi-source precipitation data, the display and release of early warning. Based on previous literature reviews and analysis, the coupled hydrological-geotechnical framework combined with multi-source forecasting precipitation data as an important direction for future development can be considered a useful geo-hazard risk mitigation measure to employ over widespread areas.