Abstract:
Lightning activity in a convection cell that occurred in Guangzhou of China on 7 May 2017 dominated by heavy warm cloud precipitation and its relationship with the precipitation structure of the cell are disscussed, using three-dimensional lightning location data of the Low_Frequency E-field Dection Array (LFEDA) in the Field Experiment Base on Lightning Sciences, China Meteorological Administration (CMA_FEBLS) and Guangzhou polarimetric radar observations. According to the ground precipitation obtained by radar inversion, the maximum cumulative precipitation from 0000 BT to 0400 BT in the cell dominated by warm cloud precipitation is 261 mm. The cell produces a total of 1250 detected lightning flashes within 4 h, with the ratio of cloud-to-ground flashes being about 24%. Lightning discharges mainly occur in the height range of 4-12 km, corresponding to the isotherm layers between approximately 0℃ and -40℃. The height and isotherm associated with the peak-frequency lightning discharges are about 8.5 km and -19℃, respectively. The heavy rainfall cell represents general tripolar charge structure, i.e., the upper positive charge region, middle negative charge region and lower positive charge region, with the negative charge core being between approximately -8℃ and -15℃ layers. The region featuring lightning discharges and dominated by dry snow account for about 82% of all, while the ratio for the region featuring lightning discharges and dominated by graupel account for about 11%. Most graupel-dominating regions associate with lightning discharges are located between 4 km and 8 km layers. This may be related to the weak convection in the cell dominated by warm cloud precipitation. Total lightning rate show relatively significant correlations with the 30 dBZ radar echo top height and volumes of the regions where radar echoes are greater than 20 dBZ and heights are larger than -20℃ level. The average height of lightning discharges is well related with the 20 dBZ radar echo top height and volumes of regions where radar echoes are greater than 30 dBZ and heights are larger than -20℃ level. Relative prominent corresponding relationship is also found between total flash frequency and maximum precipitation intensity. Meanwhile, the rainfall per flash is in the order of 10
7 kg/fl.