高温胁迫对猕猴桃叶片叶绿素荧光特性的影响

Effects of High Temperature Stress on Leaf Chlorophyll Fluorescence Characteristics of Kiwifruit

  • 摘要: 为探讨高温对猕猴桃叶片光合机构的影响,建立基于叶绿素荧光反应的高温热害识别指标,利用叶绿素快速荧光诱导动力学分析技术,研究不同温度胁迫下猕猴桃叶片8类叶绿素荧光的变化特征。结果表明:单位面积捕获的光能、单位面积有活性的反应中心数量、300 μs处相对可变荧光强度差值在30℃≤T≤54℃时均受温度胁迫影响,属光系统Ⅱ敏感位点参数,其中单位面积捕获的光能、单位面积有活性的反应中心数量随温度升高呈直线下降趋势,300 μs处相对可变荧光强度差值随温度升高呈指数上升趋势;初始荧光、最大荧光、最大光化学效率、单位面积的热耗散、单位面积用于电子传递的能量在较低温度胁迫下稳定少变,在较高温度胁迫下变化加剧,属光系统Ⅱ次敏感位点参数;多数叶绿素荧光参数在39℃和45℃存在两个突变临界点;叶绿素各荧光参数特征显示,猕猴桃叶片在30℃≤T < 39℃出现轻度温度胁迫,39℃≤T < 45℃出现中度温度胁迫,T≥45℃出现重度温度胁迫。

     

    Abstract: Kiwifruit is a vine with poor resistance to high temperature. The original habitat is mostly semi shade environment under mountain forest, with humid air, mild temperature change and weak light. The main problem in production is that the temperature of tree is often too high when the tree is introduced from the original forest environment in mountainous areas to cultivated under the direct sunlight in farmland. The leaves, fruits and trunks often get damaged.With the background of climate warming, in Shaanxi, the main kiwifruit producing area, extreme high temperature weather with daily maximum temperature over 40 ℃ often occurs. The high temperature damage of kiwifruit is particularly prominent, such as leaf wilting, shedding, fruit sunburn, fruit drop, and even tree death.In order to explore the effects of high temperature stress on photosynthetic apparatus of kiwifruit leaves and establish a heat injury identification index based on chlorophyll fluorescence response, the variation characteristics of the FO(minimal recorded fluorescence intensity), Fm(maximal recorded fluorescence intensity), Fa(maximal photochemistry efficiency), ΔWK(relative variable fluorescence difference at 300 μs), Tr(trapped energy flux per area at t=0), Et(electron transport flux per area at t=0), Dd(dissipated energy flux per area at t=0), Rm (density of QA-reducing PSⅡ reaction centers) in kiwifruit leaves under 30 ℃, 33 ℃, 36 ℃, 39 ℃, 42 ℃, 45 ℃, 48 ℃, 50 ℃, 52 ℃, 54 ℃ condition are studied by using the technique of fast chlorophyll fluorescence induction dynamics analysis(JIP-test). The results show that Tr, Rm and ΔWK are all affected by temperature stress in the range of 30-54 ℃, which belongs to PSⅡ sensitive site parameters, in which Tr, Rm show a linear downward trend with the increase of stress temperature, while ΔWK shows an exponential upward trend with the increase of stress temperature. FO, Fm, Fa, Dd, Et show stable or less variable under lower temperature stress, and intensified under higher temperature stress, which belongs to the secondary sensitive site parameters of PSⅡ. Most chlorophyll fluorescence parameters have two mutation critical points at 39 ℃ and 45 ℃. The results show that kiwifruit leaves have mild temperature stress at 30 ℃ ≤ T < 39 ℃, moderate temperature stress at 39 ℃ ≤ T < 45 ℃, and severe temperature stress at T ≥ 45 ℃.

     

/

返回文章
返回