气候动力诊断和分析系统设计与应用

Designing and Implementation of Climate Dynamic Diagnosis and Analysis System

  • 摘要: 气候动力诊断和数值模拟是认识气候变化规律、提高短期气候预测与科学决策服务水平的重要手段。但基于气候模拟的动力诊断技术在气候预测业务中还未得到广泛应用,缺乏支撑科研成果转化为业务应用的中试平台。为此,通过集成多种现代计算机通信协议、可视化编辑和气象数值计算等技术,研发可视化交互气候动力诊断和分析系统(Climate Dynamic Diagnosis and Analysis System,CDDAS),以促进气候模拟的动力诊断技术在气候业务中的广泛应用。该系统具有结构开放、诊断方法集成度高、方便易用等特点,包括数据更新备份、气候动力诊断、多模式数值模拟、结果分析4个功能模块,并设计了一种远程交互控制脚本语言,为用户二次开发提供语言环境,可实现本地客户端、服务器端和超级计算机三者交互通信控制可视化管理。该系统使用便捷,目前已在国家级业务和科研单位获得应用,在气候异常成因分析、气候预测和气候决策服务中可显著提高工作效率。

     

    Abstract: Climate dynamic diagnosis and numerical simulation are important means to understand the rules of climate variability and improve the service efficiency of short-term climate prediction and scientific decision-making. However, the dynamic diagnosis technology based on climate simulation has not been widely used in routine climate service, and almost no platforms can transform scientific research results into the use in climate operation conveniently. Therefore, by integrating various technologies such as modern computer communication protocols, visual editing and meteorological numerical simulation, Climate Dynamic Diagnosis and Analysis System (CDDAS) is developed, which can promote the dynamic diagnosis technology of climate simulation to be more widely used in climate operation. The system has the features with opening structure, high integration of diagnosis methods and high usability. Four functional modules are developed, including data management, climate dynamic diagnosis, multi-model numerical simulation and result analysis. Also, an interactive controlling language is designed, which can provide an easy method for user's further development. In the system, a communication toll among local PC (personal computer) client, remote server and supercomputer is built, which can be managed visually. Visual editing and management functions are provided to users to edit or design the interactive operation interfaces between local terminal and remote server, so as to provide online services according to their own needs. The script language provided by the system can control the visual buttons on the operation interface, the cloud computing in remote server and data network transmission, and it supports four arithmetic operations, logical judgment, numerical circulation and other statements, integrates a variety of network communication protocols, and provides a series of drawing, string processing, and window display control functions. Assisted programming and a fine interface designing tool is also provided. The client of the system can help users to manage interactive pages and graphics, and can make comparative analysis of climate diagnosis results. The system lays a good foundation for the automation of dynamic climate diagnosis. In particular, the establishment of multi-model numerical simulation module and the realization of visualization operation provide an effective way for the dynamic diagnosis and numerical simulation of climate models to be used in climate operation departments. At present, the system has been used in the national climate operation and scientific research units, which has significantly improved the efficiency and convenience of climate operation in the diagnosis of climate anomalies, climate prediction and climate decision-making services.

     

/

返回文章
返回