Abstract:
Squall line often leads to heavy rain, gale and hail, which is a difficult key problem in nowcasting. In order to explore the feasibility of deep learning for squall line identification, the training, validation and test set sample sets are established based on the radar data of Zhengzhou and Zhumadian in Henan Province during 2008-2020. The convolutional neural network (CNN) algorithm is used to construct a squall line identification model. The critical success index (CSI), equitable threat score (ETS), hit rate (POD) and false positive rate (FAR) are used to quantitatively evaluate the identification effect of the model. The influence of different sample composition and network structure on squall line identification effect are compared. The results show that the composition ratio of sample is imbalanced, because squall line accounts for very small proportion in all kinds of weather processes. This imbalance will degrade the classification performance of the identification model to squall line samples. The imbalance of sample composition can be improved by changing sampling mode and optimizing network structure, both can improve the identification efficiency, especially the latter. However, the combination of the two methods does not bring further improvement. The over fitting problem in network training can be alleviated by increasing the sparsity and randomness of the network structure. The validation set shows that CSI is 0.87, ETS is 0.82, POD is 0.96, and FAR is 0.10. Based on the test set, the echo can be correctly identified by network as non-squall line in the weak stage of convection development, and as squall line in the strong stage of squall line development. The echo intensity and spatial distribution of squall line cases differ greatly, and the samples in the test set have the image features which are not included in the training set, and therefore the identification effect reduces. The test set show that CSI is 0.66, ETS is 0.58, POD is 0.86, and FAR is 0.24. The research reveals that CNN can extract and learn the image features of squall line echo, and it has a certain ability to identify squall line.