气候变暖对冬小麦徐麦33产量和品质影响

Influences of Global Warming on Yield Structure and Quality of Winter Wheat Xumai 33

  • 摘要: 利用2017—2022年江苏徐州农业气象试验站试验数据研究作物品种、土壤物理化学性质和管理措施均相同条件下,气候变暖对半冬性冬小麦品种产量结构和籽粒品质的影响。研究发现:不同播期冬小麦生长季平均气温升温幅度为0.1~1.7℃。平均气温升高对冬小麦产量结构造成影响,平均气温每升高1℃,冬小麦穗粒数减少14.7%;平均气温升高对籽粒蛋白质、脂肪和氨基酸含量造成负面影响,进而影响籽粒品质。平均气温与籽粒蛋白质含量相关系数为-0.72(达到0.01显著性水平),与脂肪含量相关系数为-0.52(达到0.05显著性水平)。此外,气温升高对16种氨基酸中的14种产生负面影响,其中对天冬氨酸和精氨酸含量负面影响达到0.05显著性水平。导致上述结果的主要原因是气候变暖夜间最低气温升高,冬小麦呼吸作用加强,不利于冬小麦同化作用和有机物积累;气候变暖导致冬小麦开花期到成熟期高温热害增多,影响冬小麦生理生化过程,特别是限制了冬小麦营养物质的吸收和合成。

     

    Abstract: To study the impact of global warming on the yield and quality of winter wheat, field scientific experiments are carried out at Xuzhou Agro-meteorological Station of Jiangsu from 2017 to 2022. There are four sowing dates each year with different temperature during the growing season of winter wheat, while the winter wheat variety, soil physical and chemical properties, and agriculture measures are all the same. Therefore, the yield structure and quality of winter wheat are mainly influenced by climate change. It shows that the average temperature increases 0.1℃ to 1.7℃ during the growing season of winter wheat at different sowing dates during 5-year field experiments. The increasing temperature has an impact on the yield structure, and there is a significant negative influence on the number of grains per ear of winter wheat, with a correlation coefficient of -0.49 (P<0.05). The number of grains per ear of winter wheat decreases by 14.7% for 1℃ increase, resulting in a reduction in yield. The increasing temperature also has a negative impact on grain quality, the correlation coefficient between temperature and grain protein content reaches -0.72 (P<0.01), and the correlation coefficient with fat content is -0.52 (P<0.05). In addition, the increasing temperature has a negative impact on 14 of 16 amino acids, especially on the content of aspartic acid and arginine. Overall, climate change could decrease the number of grains per ear of winter wheat, and decrease significantly in protein and fat content in grains. The main cause is that the minimum temperature at night increases due to global warming, strengthening the respiration of winter wheat, which is not conducive to its assimilation and organic matter accumulation. At the same time, climate warming leads to an increase in high-temperature damage during the flowering to maturity period of winter wheat, affecting its physiological and biochemical processes, especially limiting the absorption and synthesis of nutrients of winter wheat.

     

/

返回文章
返回