一次触发闪电金属汽化通道的亮度与电流特征

Luminosity and Current Characteristics of Metal-vaporized Channel of an Artificially Triggered Lightning

  • 摘要: 2022年夏季在广州从化人工引雷试验场的一次触发闪电过程中, 获取了近距离的高分辨率图像、通道底部电流波形和高速摄像数据。此次触发闪电的高分辨率图像清晰展现了多回击过程金属汽化通道段的空间位移, 汽化通道在连续电流过程中呈现类似火焰的发光特征。结合高速摄像与通道底部电流数据, 研究回击与连续电流过程中金属汽化通道段亮度与电流强度的相关性, 结果表明:相比于回击峰值电流, 其平方与回击峰值亮度的相关性更强, 相关系数分别为0.940和0.955(均达到0.001显著性水平)。对于伴随长连续电流的回击过程, 回击下降部分与之后连续电流过程光电线性相关性拟合的斜率有明显差异。叠加在长连续电流过程上的多个M分量脉冲亮度峰值相对于电流峰值时间滞后, 较小的脉冲峰值电流对应较大的亮度峰值滞后时间。

     

    Abstract: Channel current is an important parameter of the lightning discharge, but it's difficult to be directly measured due to the randomness and instantaneity of the natural lightning. The channel luminosity, however, is relatively easier to obtain. If there is a definite relationship between channel current and luminosity, the channel current can be estimated based on its luminosity. The correlation between the current and luminosity of lightning channel can be obtained through artificially triggered lightning experiments, during which the channel current can be directly measured and close-range optical observations of the lightning channel can be carried out.Base on observations of an artificially triggered lightning obtained at the Field Experiment Base on Lightning Sciences, China Meteorological Administration (CMA_FEBLS) in 2022, characteristic parameters of the channel-base current, the luminosity of the metal-vaporized channel, and their correlation are analyzed. The spatial movement of the metal-vaporized channel during the multiple return stroke processes is distinguished using still image with high spatial resolution. Combined with the high-speed video camera images and the channel current data, the correlation between the luminosity of the metal-vaporized channel and the channel current in the process of return strokes, and M components are studied. The results show that compared with the peak current, its squared value has stronger correlation with the peak luminosity for 13 return strokes. For the return stroke followed by a long continuing current, as well as the return stroke decay stage, both the current and M components superimposed on it show good linear correlations with the channel luminosity, with correlation coefficients of 0.981 and 0.988, respectively. However, the slope values of correlation fitting lines for the channel current versus the channel luminosity of the return stroke decay stage and the subsequent continuing current are obviously different. For M components superimposed on the long continuing current, a time delay for the peak luminosity relative to the peak current is revealed, and it is found that a smaller pulse peak current corresponds to a larger delay time.

     

/

返回文章
返回