新一代数值预报系统GRAPES研究进展
Recent Progress on GRAPES Research and Application
-
摘要: 中国气象科学研究院 (灾害天气国家重点实验室) 自2000年起, 先后在科技部“973”重大基础项目“我国重大天气灾害形成机理和预测理论研究”和“十五”重点攻关项目“中国气象数值预报系统技术创新研究”支持下, 主持承担了中国气象局新一代全球/区域多尺度通用同化与数值预报系统GRAPES (Global/Regional Assimilation and PrEdiction System) 的研究开发, 围绕着资料同化、模式动力框架、物理过程、大型软件工程等核心技术开展了自主创新研究, 取得了非静力中尺度模式、三维变分资料同化、标准化、模块化、并行化模式程序软件等方面的突出成果, 部分成果已在业务上得到了应用, 显示了良好的技术性能和业务发展潜力。GRAPES系统是完全依靠中国科学家的力量自主研究发展的、先进的新一代数值预报系统。该文简要介绍GRAPES的研究内容、主要研究进展和初步应用, 以及未来发展的初步计划。
-
关键词:
- 数值天气预报;
- 资料同化;
- 全球/区域多尺度一体化模式
Abstract: Since 2000, in the support of two national key projects of "Chinese Heavy Rain Research Experiment" and "Research on Meteorological Numerical Prediction System Techniques", LaSW/CAMS has been in charge of developing new generation NWP system GRAPES (Global/Regional Assimilation and PrEdiction System). GRAPES' project is mainly focused on data assimilation, dynamical core, physical parameterization schemes, and infrastructure software. The main achievements include 3 dimensional variational data assimilation; standardized, modularized and parallelized coding infrastructure; full-compressible and non-hydrostatic meso-scale NWP system and its various applications. The operational results are highly encouraging and promoting for further developments. Also, a brief introduction to GRAPES research project, main progresses and some applications with future plan of GRAPES development is given. -
表 1 Charney-Phillips方法的模式变量垂直配置
-
[1] Xue Jishan. Progresses of researches on numerical weather prediction in China: 1999—2002. Adv Atmos Sci, 2004, 21: 467-474. doi: 10.1007/BF02915573 [2] 陈德辉, 杨学胜, 胡江林, 等.多尺度通用动力模式框架的设计策略.应用气象学报, 2003, 14(4): 452-461. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030456&flag=1 [3] Kalnay E. Atmospheric Modeling, Data Assimilation and Predictability. Maryland: University of Maryland, 2003: 4-12. [4] 陈德辉, 胡志晋, 徐大海, 等. CAMS大气数值预报模式系统研究.北京:气象出版社, 2004: 1-190. [5] 张华, 薛纪善, 庄世宇, 等. GRAPES三维变分同化系统的理想试验.气象学报, 2004, 62(1): 31-41. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200401003.htm [6] Staniforth A, Cote J J. Semi-lagrangian integration schemes for atmospheric models—review. Mon Wea Rev, 1991, 119: 2206-2223. doi: 10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2 [7] Qian Jianhua, Semazzi F H M, Scroggs J S. A global nonhydrostatic semi-Lagrangian atmospheric model with orography. Mon Wea Rev, 1998, 126: 747-770. doi: 10.1175/1520-0493(1998)126<0747:AGNSLA>2.0.CO;2 [8] Semazzi H F M, Qian Jianhua, Scroggs J. Aglobal semi-lagrangian semi-implicit atmospheric model. Mon Wea Rev, 1995: 123. [9] Arakaw a Lamb. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, Methods in Computational Physics∥General Circulation Models of the Atmosphere. Academic Press, New York Press, 1977. [10] Gal-Chen T, Sommerville R C J. On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J Comput Phys, 1975, 17: 209-228. doi: 10.1016/0021-9991(75)90037-6 [11] Bates J R, Semazzi F H M, Higgins R W, et al. Integration of the shallow water equation on the sphere using a vector semi-Lagrangian scheme with a multigrid solver. Mon Wea Rev, 1990, 118: 615-627. doi: 10.1175/1520-0493%281990%29118%3C1615%3AIOTSWE%3E2.0.CO%3B2 [12] Eisenstat S C, Elman H C, Schultz M H. Variational interative methods for nondymmetric systems of linear equations. SIAM J Numer Anal, 1983, 20: 345-357. doi: 10.1137/0720023