冷空气对高原低涡移出青藏高原的影响
Cold Air Influence on the Tibetan Plateau Vortex Moving out of the Plateau
-
摘要: 在对1998—2004年冷空气影响高原低涡移出青藏高原 (以下简称高原) 观测事实分析的基础上, 利用NCEP再分析资料对2002年8月12—14日托勒低涡移出高原的位涡进行诊断分析, 并通过数值试验揭示了托勒低涡移出高原的冷空气侵入特征和影响机理。结果表明:这次托勒低涡是受我国东北冷空气影响, 有高位涡空气伸入低涡区, 使冷空气迫近暖湿空气, 低涡处在斜压不稳定增强情况下移出高原的。在低涡区域没有冷空气或我国东北不存在冷温度槽情况下, 将会使伸向高原东北部的冷空气主力偏东、减弱, 使低涡受到我国东北冷空气影响减弱, 斜压不稳定减弱, 从而使高原低涡移出高原的速度减慢, 低涡强度减弱, 尤其是我国东北冷温度槽的影响更为明显, 在我国东北没有冷温度槽存在的情况下, 低涡24 h内西退, 在高原边缘徘徊。Abstract: Storm rainfall and torrential storm rainfall and flood to the east of the Tibetan Plateau and even over a large area of China can be led to by some vortices that move out of the main Plateau region. Much attention is paid by meteorologists to the research on Plateau vortex moving eastwards, but the study of cold air influence on the Tibetan Plateau vortex moving out of the Plateau is few. Based on analyzing the different vortex activities which lead to the severe flood in large area of China, the middle troposphere level cold air influence on the Plateau vortex moving out of the Plateau and by using the synoptic diagnose, numerical simulation and experiment, the cold air influence on the Plateau vortex moving out of the Plateau is discussed.By investigating and analyzing the different east moving processes of Plateau vortices during 1998—2004, typical Plateau vortex processes leading to the severe flood disasters over different region of China are selected. By synoptic analysis and using 4 times daily 1°×1°NCEP data and the same time upper air observational data, the potential vorticity of Tuole Plateau vortex moving out of the Plateau during August 12—14, 2002 is analyzed. By using the MM5 version 3.4 PSU/NCAR high resolution non-static mesoscale model, a series of numerical experiments are conducted. The following results are obtained. There is cold air influence both before and after the Plateau vortex moving out of the Plateau which has long active time (more than 36 hours). The Tuole Plateau vortex moves with shear line and moves out of the Plateau by influence of the cold air flow invasion from the northeast. By potential vorticity analysis on the Tuole vortex moving out of the Plateau, it is found that the Plateau vortices is influenced by cold air flow of northeast region of China and moves out of the Plateau when there is high level potential energy air moving into low level potential energy air and the cold air flow is forced close to wet and warm air flow. It is demonstrated through the numerical simulation of cold air influence on Tuole Plateau vortex that when there is no cold in Plateau vortex area or no cold temperature trough, the northeast main cold air is made lean to east and weak and less influence to Tuole vortex of northeast China cold air flow. The baroclinic instability is made small.The speed of the Plateau vortex moving out of the Plateau will also be slowed down, and the intensity of the vortex will be weaker and the maximal wind speed will be lowered. The influence of the China northeast cold temperature trough is especially much obvious and the Plateau vortex region will be small when there exists a China northeast cold temperature trough, and the Plateau vortex will draw back to the west and float around the Plateau edge.
-
图 1 5次高原低涡移动路径示意图
(1表示1998年8月17日12:00—20日00:00申扎低涡; 2表示1999年7月14日00:00—16日00:00石渠低涡; 3表示2000年7月10日00:00—13日00:00托托河低涡; 4表示2002年8月12日00:00—20日00:00托勒低涡; 5表示2003年7月12日00:00—14日12:00诺木洪低涡)
Fig. 1 The moving tracks of 5 Plateau vortices
(1 indicates the Shenzha Plateau vortex track from 12:00 on August 17 to 00:00 on August 20, 1998;2 indicates the Shiqu Plateau vortex track from 00:00 on July 14 to 00:00 on July 16, 1999;3 indicates the Totohe Plateau vortex track from 00:00 on July 10 to 00:00 on July 13, 2000;4 indicates the Tuole Plateau vortex track from 00:00 on August 12 to 00:00 on August 20, 2002;5 indicates the Nuomuhong Plateau vortex track from 00:00 on July 12 to 12:00 on July 14, 2003)
图 2 2002年8月12日00:00(a) 及12:00(b)500 hPa高度场和温度场
(实线为等高线, 单位:gpm; 虚线为等温线, 单位:℃; “C”为低涡中心; 阴影区为青藏高原区域, 下同)
Fig. 2 500 hPa geopotential height and temperature field at 00:00 (a) and 12:00 (b) on August 12, 2002
(solid line denotes geopotential height, unit:gpm; dashed line denotes temperature, unit:℃; "C" denotes the vortex center; shade area denotes Tibetan Plateau hereinafter)
图 6 500 hPa流场积分结果 (a) 控制试验积分12 h, (b) 控制试验积分24 h, (c) 试验1积分12 h, (d) 试验1积分24 h, (e) 试验2积分12 h, (f) 试验2积分24 h
Fig. 6 Output of 500 hPa stream field (a) the control experiment with 12 hours integration, (b) the control experiment with 24 hours integration, (c) experiment 1 with 12 hours integration, (d) experiment 1 with 24 hours integration, (e) experiment 2 with 12 hours integration, (f) experiment 2 with 24 hours integration
表 1 不同高原低涡移出高原的500 hPa特征比较
Table 1 The characteristics comparison of different Plateau vortex moving out of the Plateau on 500 hPa
表 2 2002年8月12—14日托勒低涡活动的中心位置、涡区最冷温度、涡区最强日降温
Table 2 The center position, minimum temperature, maximum daily detemperature of the Tole Plateau vortex during August 12—14, 2002
表 3 各试验低涡特征值
Table 3 The eigenvalue of different numerical experiments
-
[1] 郁淑华. 高原天气系统活动对1998年长江大洪峰影响的初步分析∥1998年长江嫩江流域特大暴雨的成因及预报应用研究. 北京: 气象出版社, 2001: 359-364. [2] 张顺利, 陶诗言, 张庆云, 等.1998年夏季中国暴雨洪涝灾害的气象水文特征.应用气象学报, 2001, 12(4):442-457. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010459&flag=1 [3] 丁一汇.1991年江淮流域持续性特大暴雨研究.北京:气象出版社, 1993:113-128. [4] 高守亭.流场配置及地形对西南低涡形成的动力作用.大气科学, 1987, 11:263-271. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198703004.htm [5] 卢敬华.西南低涡概论.北京:气象出版社, 1986:1-270. [6] 郑庆林, 王必正, 宋青丽.青藏高原背风坡地形对西南涡过程影响的数值试验.高原气象, 1997, 16(3):225-234. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX703.000.htm [7] 马振锋. 近十年来西南低涡的研究进展∥大气科学应用与研究 (五). 北京: 气象出版社, 1993: 117-125. [8] 朱禾, 邓北胜, 吴洪.湿位涡守恒条形下西南涡的发展.气象学报, 2002, 60(3):343-351. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200203009.htm [9] 赵平, 胡昌京, 孙淑清.一次西南低涡形成过程的数值试验和诊断.大气科学, 1992, 16:177-184. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199202005.htm [10] 陈忠明, 闵文彬. 西南低涡的统计研究∥第二次青藏高原大气科学试验理论研究进展. 北京: 气象出版社, 2000: 368-378. [11] 李国平, 万军, 卢敬华.暖性西南低涡形成的一种可能机制.应用气象学报, 1991, 2(1):91-99. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19910111&flag=1 [12] 邹波, 陈忠明.一次西南低涡发生发展的中尺度诊断.高原气象, 2000, 19(2):141-149. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200002001.htm [13] 陈忠明, 闵文彬, 缪强, 等.高原涡与西南涡耦合作用个例诊断.高原气象, 2004, 23(1):75-80. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200401011.htm [14] 陈忠明, 闵文彬, 崔春光.西南低涡研究的一些新进展.高原气象, 2004, 23(增刊):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX2004S1000.htm [15] 叶笃正, 高由禧.青藏高原气象学.北京:科学出版社, 1979: 122-126;145-146;259-260. [16] 李国平.青藏高原动力气象学.北京:气象出版社, 2002:22-23. [17] 宋敏红, 钱正安.高原及冷空气对1998和1991年夏季西太副高及雨带的影响.高原气象, 2002, 21(6):556-564. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200206004.htm [18] 刘富明, 伏梅娟.东移的青藏高原低涡的研究.高原气象, 1986, 5(2):125-134. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX198602002.htm [19] 郁淑华.高原低涡东移的水汽图象.高原气象, 2002, 21(2): 199-204. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200202012.htm [20] 高守亭, 平凡.大地形强迫下背风涡旋的实验研究.科学通报, 2004, 49(23):2485-2494. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200423022.htm [21] Hideo Takahash. Observational study on the initial formation process of the Mei-yu frontal disturbance in the eastern foot of the Tibetan Plateau in middle-late June 1992. J Meteor Soc Japan, 2003, 81(6):1303-1327. doi: 10.2151/jmsj.81.1303 [22] 乔全明.夏季500hPa移出高原低涡背景场分析.高原气象, 1987, 6(1):45-55. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX198701004.htm [23] 丁治英, 吕君宁.青藏高原低涡东移的数值试验.南京气象学院学报, 1990, 13(3):426-433. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX199003019.htm [24] 于玉斌, 姚秀萍.对华北一次特大台风暴雨过程的位涡诊断分析.高原气象, 2000, 19:111-120. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200001013.htm [25] 刘健文, 郭虎, 李耀东, 等.位涡和湿位涡单位.天气分析预报物理量计算基础.北京:气象出版社, 2005:172-173. [26] 郁淑华, 高文良.高原低涡移出高原的观测事实分析.气象学报, 2006, 64(3):392-399. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200603013.htm [27] 乔全明.夏季500 hPa移出高原低涡的背景场分析.高原气象, 1987, (6):45-55. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX198701004.htm [28] Chang C P, Lan Yi. A numerical simulation of vortex developmebt during the 1992 East Asian Summer Monsoon onset using the Navy's Regional Model. Mon Wea Rev, 2000, 128:1604-1631. doi: 10.1175/1520-0493(2000)128<1604:ANSOVD>2.0.CO;2