基于系留气艇平台的红外辐射传输算法实验验证

alidation of Atmospheric Radiative Transfer Model with Field Experiments Using Tethered-balloon-borne Facilities

  • 摘要: 中国科学院大气物理研究所中层大气和全球环境探测重点实验室 (LAGEO) 建立了以系留气艇为平台的综合探测系统。通过气艇在大气边界层上升、下降过程获得不同高度的气象参数和同时的辐射参数。以气象参数为输入,应用辐射传输模式 (MODTRAN4.0) 获得模式辐射输出,将其与实测辐射值作对比,验证MODTRAN4.0模式的准确性,为有关目标识别与遥感提供基础。2006年8月在中国科学院大气物理研究所香河综合观测站利用系留气艇平台进行了验证实验,并对热红外波段的模式对比结果进行分析。结果表明:所建实验系统具备进行模式验证的能力,在热红外波段,MODTRAN4.0模式输出结果与实测辐射亮度之间的相对误差的均方差在边界层大气条件下小于3%。

     

    Abstract: Atmospheric radiative transfer and its algorithms are the theoretical basis and effective tools in the field of remote sensing and inversion algorithm in the earth system, and also the key tools for the space,ground target recognition and quantitative assessment of background radiation. During recent decades, a series of radiative transfer(RT) model have been proposed to support a large variety of quantitative remote sensing as well as target,background discrimination research and applications. Owing to respective approximations and simplifications inherent in those RT models, their accuracy, uncertainty and adaptability are of critical significance to different researchers and end users. Validation of the RT model for its different wave band, in particular by using field experiments is necessary, especially for those applications with higher accuracy demands. Among the RT codes currently used, a considerable part of them are MODTRAN and its evolution versions. In China, MODTRAN has also been applied to the study of remote sensing, atmospheric correction of satellite images, and a wide range of applications in the atmospheric sciences, hence, the validation mainly focuses on MODTRAN model and the thermal infrared window 8—14 μm (714~1250 cm-1) band first of all. Due to little atmospheric absorption in the infrared window band and very low radiance, this band is a range of wavelengths to which the Earth's atmosphere is relatively transparent, and is an important band used for space,ground target recognition, and ground/satellite-based remote sensing as well. Because the spectral composition of radiation transfer varies greatly with varying local environmental conditions, such as aerosol characteristics, water vapor content, surface temperature, greenhouse gases and so on, the accuracy that MODTRAN demonstrates should be attained by making the comparisons between observed radiances and the radiances computed from coincident in situ profile data. For field experiment validation, a scheme is proposed, using a special patented tethered balloon as platform and a combined sensor system consisting of both meteorological (GPS radiosonde, aerosol particle spectrometer, ozonesonde) and radiation observation instruments (visible and broadband thermal infrared imager), as well as wireless receiver,transmitter. Field experiments are conducted in August 2006 at IAP's Xianghe Observatory. During the process the tethered balloon going up and down in the atmosphere of boundary layer, measurements of both meteorological and radiation instruments at different height are carried out simultaneously. Using the observed meteorological parameters as input to RT model (MODTRAN 4.0), comparisons between observed radiances and radiances output from the model are used to validate the accuracy of the RT algorithm. The balloon is launched and drawn back for 16 times to do the validation. Analysis on the experiment results show that in thermal infrared wave band, the statistical results of the root-mean-square error of relative error between model output (with real-time meteorological parameters as input) and simultaneous radiance measurements is less than ±3%

     

/

返回文章
返回