留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风云三号 (02) 批卫星微波氧气吸收通道降水特性

张淼 卢乃锰 谷松岩 张文建

张淼, 卢乃锰, 谷松岩, 等. 风云三号 (02) 批卫星微波氧气吸收通道降水特性. 应用气象学报, 2012, 23(2): 223-230.
引用本文: 张淼, 卢乃锰, 谷松岩, 等. 风云三号 (02) 批卫星微波氧气吸收通道降水特性. 应用气象学报, 2012, 23(2): 223-230.
Zhang Miao, Lu Naimeng, Gu Songyan, et al. Temperature-sounding microwave channels for FY-3(02). J Appl Meteor Sci, 2012, 23(2): 223-230.
Citation: Zhang Miao, Lu Naimeng, Gu Songyan, et al. Temperature-sounding microwave channels for FY-3(02). J Appl Meteor Sci, 2012, 23(2): 223-230.

风云三号 (02) 批卫星微波氧气吸收通道降水特性

资助项目: 

国家863项目 2007AA12Z115

详细信息
    通信作者:

    卢乃锰, E-mail: lunm@cma.gov.cn

Temperature-sounding Microwave Channels for FY-3(02)

  • 摘要: 我国新一代极轨业务气象卫星风云三号 (02) 批计划2012年发射。该文利用UWNMS模拟2005年Katrina飓风的结果作为基础数据集,借助VDISORT微波辐射传输模式对风云三号 (02) 批计划装载的微波探测仪器中50~60 GHz和新增的118.75 GHz频点的降水特性进行初步研究。首先通过晴空权重函数匹配,选择出50~60 GHz与118.75 GHz频点匹配关系较好的4对通道。敏感性分析表明:各通道对各种水凝物粒子均很敏感,可用于改进现有业务降水反演算法。分别选取50~60 GHz 4个通道、118.75 GHz 4个通道、50~60 GHz及118.75 GHz全部通道3种不同的通道组合进行反演试验。结果表明:将50~60 GHz及118.75 GHz通道联合起来进行降水反演可提高降水反演的精度,并可以更好地区分降水区与非降水区。
  • 图  1  权重函数曲线

    (a)50.3 GHz与118.75±5.0 GHz, (b)51.76 GHz与118.75±3.0 GHz, (c)52.8 GHz与118.75±2.5 GHz, (d)54.40 GHz与118.75±1.1 GHz

    Fig. 1  Weighting functions at 50.3 GHz and 118.75±5.0 GHz (a), 51.76 GHz and 118.75±3.0 GHz (b), 52.8 GHz and 118.75±2.5 GHz (c), 54.40 GHz and 118.75±1.1 GHz (d)

    图  2  剖线上的通道亮温及水凝物粒子柱总量

    Fig. 2  The bright temperature and columnar water content for the hydrometeor species

    图  3  3种不同通道组合反演的雨粒子及霰粒子的垂直分布及真值分布

    Fig. 3  Vertical distribution of rain and graupel liquid/ice water content retrieval for three different sets of frequencies

    表  1  3种不同通道组合反演的雨、雪、霰粒子柱总量、降水率与真值之间的相关系数及均方根误差

    Table  1  Correlation coefficient and root mean square between the truth and the retrieved water/ice water paths of three hydrometeors (rain, snow and graupel) and the rain rate for the three different sets of frequencies

    通道组合雨粒子雪粒子霰粒子降水率
    相关系数均方根误差
    /(kg·m-2)
    相关系数均方根误差
    /(kg·m-2)
    相关系数均方根误差
    /(kg·m-2)
    相关系数均方根误差
    /(mm·h-1)
    50~60 GHz通道0.860.840.971.320.940.090.845.10
    118.75 GHz通道0.800.970.951.590.960.070.746.24
    全部通道0.930.600.971.210.970.060.854.82
    下载: 导出CSV

    表  2  3种不同通道组合反演降水的统计参数结果

    Table  2  Results in term of statistical analysis on the rain retrieval for three different sets of frequencies

    参数50~60 GHz通道118.75 GHz通道全部通道
    RC0.930.880.94
    ICS0.890.830.91
    DPO0.960.970.96
    RFA0.070.140.05
    下载: 导出CSV
  • [1] 董佩明, 王海军, 韩威, 等.水物质对云雨区卫星微波观测模拟影响.应用气象学报, 2009, 20(6):682-691. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090605&flag=1
    [2] 陈廷娣, 王连仲, 窦贤康. TRMM卫星与机载雷达在降雨反演中的数据对比个例研究.应用气象学报, 2008, 19(4):454-462. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080409&flag=1
    [3] 吴庆梅, 程明虎, 苗春生.用TRMM资料研究江淮、华南降水的微波特性.应用气象学报, 2003, 14(2):206-214. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030225&flag=1
    [4] 李小青, 吴蓉璋.用GPROF算法反演降水强度和水凝物垂直结构.应用气象学报, 2005, 16(6):705-717. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050693&flag=1
    [5] 王小兰, 程明虎, 周凤仙.对流性降水云微波辐射特性.应用气象学报, 2009, 20(3):321-328. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090308&flag=1
    [6] Staelin D H, Chen F W, Fuentes A. Precipitation measurements using 183-GHz AMSU satellite observations. IEEE Trans Geosci Remote Sens, 1999, 37(4):2069-2071. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=775034
    [7] Staelin D H, Chen F W. Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite. IEEE Trans Geosci Remote Sens, 2000, 38(5): 2322-2332. doi:  10.1109/36.868889
    [8] Gasiewski A J, Staelin D H. Numerical modeling of passive microwave O2 observations over precipitation. Radio Sci, 1990, 25(3): 217-235. doi:  10.1029/RS025i003p00217
    [9] Schwartz M J, Barrett J W, Fieguth P W, et al. Observations of thermal and precipitation structure in a tropical cyclone by means of passive microwave radiometry. J Appl Meteorol, 1996, 35: 671-678. doi:  10.1175/1520-0450(1996)035<0671:OOTAPS>2.0.CO;2
    [10] Bauer P, Mugnai A. Precipitation profile retrievals usingtemperature-sounding microwave observations. J Geophys Res, 2003, 108(D23), 4730, doi:  10.1029/2003JD003572.
    [11] Bauer P, Moreau E, Dimichele S. Hydrometeor retrieval accuracy using microwave window and sounding channel observations. J Appl Meteor, 2005, 44: 1016-1032. doi:  10.1175/JAM2257.1
    [12] Pinori S, Baordo F, Medaglia C M, et al. On the potential of sub-mm passive MW observations from geostationary satellites to retrieve heavy precipitation over the Mediterranean Area. Advances in Geosciences, 2006, 7: 387-394. doi:  10.5194/adgeo-7-387-2006
    [13] Weng F Z. A multi-layer discrete-ordinate method for vector radiativetransfer in a vertically-inhomogeneous, emitting and scatting atmosphere-Ⅰ: Theory. J Quant Spectrosc Radiative Transfer, 1992, 47(1): 19-33. doi:  10.1016/0022-4073(92)90076-G
    [14] Liebe H J, Rosenkranz P W, Hufford G A. Atmospheric 60 GHz oxygenspectrum: New laboratory measurements and line parameters. J Quant Spectrosc Radiative Transfer, 1992, 48: 629-643. doi:  10.1016/0022-4073(92)90127-P
    [15] Li J, Wolf W W, Menzel W P, et al. Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J Appl Meteor, 2000, 39: 1248-1268. doi:  10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2
    [16] Tripoli G J. A nonhydrostatic mesoscale model designed to simulate scale interaction. Mon Wea Rev, 1992, 120:1342-1359. doi:  10.1175/1520-0493(1992)120<1342:ANMMDT>2.0.CO;2
    [17] Kummerow C, Olson W S, Giglio L. A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans Geosci Remote Sensing, 1996, 34:1213-1232. doi:  10.1109/36.536538
  • 加载中
图(3) / 表 (2)
计量
  • 文章访问数:  5847
  • HTML全文浏览量:  3397
  • PDF下载量:  5191
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-02
  • 修回日期:  2011-11-08
  • 刊出日期:  2012-04-30

目录

    /

    返回文章
    返回