Abstract:
Henan Province is one of the most important growing areas for winter wheat in China, and irrigation is the main planting and managing mode for winter wheat. Traditionally, winter wheat is watered three times during the whole growing season, namely, irrigating before overwintering, at green turning stage and jointing to grain filling stage respectively. As to the impact of climate warming, how the irrigated wheat would be influenced in the future has been concerned.DSSAT-CERES Wheat Model is widely used in China and has been proved feasible in future influence simulating. Based on parameters debugging and regional validation of the DSSAT-CERES Wheat Model, two different climatic scenarios data which is outputted by regional climate model PRECIS is combined to study the possible yield variation of winter wheat in the future 30 years of 2021—2050 in Henan Province. The reduction rate of yield and the reduction distribution as well as the changing of water use efficient (WUE) are shown.By drawing quartile graph, the fluctuation of the yield in the future is analyzed.In case of two kinds of greenhouse gas emission scenarios A2 and B2, on the assumption that the traditional irrigation mode doesn't change, the average rate of yield reduction is 5% approximately, and the reduction in A2 scenario is more obvious than B2. Generally speaking, the final yield reduction on the east and southwest plain is relatively less, and the largest reduction rate appears in different decade for different scenarios. With the yield reduction, the variability of yield decreases a little, but 25%—75% interval which means stable yield also shrinks.Extreme low yield is more likely to occur in B2 scenario than A2. During 2021—2050, with the decrease of final yield and increase of water consumption, the WUE for irrigated winter wheat will decrease by 9% averagely for two scenarios. Taking the advantage of crop model experiment, sowing date, planting density and irrigating method are adjusted, respectively. Results show that postponing the planting date has an effect on increasing yield and yield stability, subtracting the planting density to some extent achieves more yield than increasing the density, and changing the watering method from ditch irrigation to trickle could save water resource and enhance final yield.