Abstract:
The progress in developing the second-generation short-range climate forecast system of National (or Beijing) Climate Center (NCC or BCC) is introduced, focusing on four items, i.e., the global ocean data assimilation system, the land data assimilation system, the monthly-scale dynamical extended-range forecast system (DERF), and the seasonal climate forecast system. With a better assimilation of temperature and salinity than the first-generation system, the second-generation ocean data assimilation system is now at the quasi-operational level. The land data assimilation system is still under development, but the multisource precipitation merging subsystem is now quasi-operational and can produce reanalysis of precipitation as a forcing to land system. The atmospheric general circulation model BCC_AGCM2.2 and the climate system model BCC_CSM1.1(m) are the main tools for the second-generation monthly-scale DERF and the second-generation seasonal prediction system, respectively. The former has entered quasi-operational use since middle August of 2012 and conducted four-member real-time forecast jobs and 80 hindcast jobs every day, and the latter will enter its quasi-operational stage by the end of 2013. A preliminary evaluation indicates that the second-generation system shows a certain capability in predicting the pentad, ten-day, monthly, seasonal and inter-annual climate variability. It exhibits a higher prediction skill, compared to the first-generation system, in terms of precipitation, surface air temperature, atmospheric circulation and El Ni o-Southern Oscillation, and so on. As shown by the hindcasts by two generations of DERF (i.e., DERF1.0 and DERF2.0) for the monthly mean surface air temperature in January and July, DERF2.0 shows overall higher prediction skill than DERF1.0, especially over the tropical Indian Ocean and Pacific and most mid-high latitude areas in the Northern Hemisphere in January, and most regions in global tropics and subtropics in July. Also, the 20-year hindcasts initialized in the end of February of each year by the two generations of seasonal climate prediction system indicate that, the second-generation system shows significant prediction skill of surface air temperature over most areas in spring, especially over the tropical Pacific, Atlantic and Indian Ocean. In contrast, the skills over most areas of the first-generation system are relative lower.