Abstract:
With the rapid development of information technology, the demand of connectivity keeps rising and the scale of network keeps expanding. Design and implementation of a reliable wide-area-network are critical for information transmission. With the development of meteorological services and growth of social needs, observations and forecast data gradually become larger and call for timeliness. Simple network infrastructure is no longer a guarantee for reliable transmission and highly reliable network is desired, not only for mass data transmission, but also for higher reliability. At present, the reliability of broadband network at provincial level is normally realized by taking a downgrade backup. But the bandwidth of backup link is narrow, so the transmission performance cannot catch up with the original link. Besides, it's unable to switch links automatically, and manual intervention is still needed.An original network reliability designing method is proposed based on BFD (bidirectional forwarding detection), NQA (network quality analysis) network reliability designing scheme, and strategy of routing technology. Through summarizing the network reliability research status, analyzing the meteorological broadband network reliability, the design and realization of this new meteorological broadband network is discussed from three aspects: The network backup, the flow sharing and the automatically switching. The application of the scheme has improved the network structure and bandwidth of the meteorological Province-City-County network system, and also has realized network backup, flow sharing and automatic switching on faults, which improves the reliability level greatly. There are 3 challenges in the design and implementation of this network. The first is the implementation of redundancy network with heterogeneous transmission links, the second is the routing redundancy of physical link testing, and the last is the real-time switching at business level of task types. The scheme has been tested strictly and successfully implemented in meteorological broadband network of Guangdong Province, and it's also suitable for meteorological network design of other provinces.