Abstract:
The comparison between satellite data and WACCM-3 model simulated results shows that simulated results are well consistent with satellite data in central Africa, the Arabian Peninsula, Indian subcontinent, and most parts of China, but in south central Africa, Caribbean and Europe, the model results are lower. In short, model results can well reproduce the global distribution of aerosols, but numerical difference exists in some areas.Simulation indicates that changes of stratospheric temperature are neither caused by changes of stratospheric short-wave radiation nor decided by the changes of long-wave radiation. The changes of stratospheric temperature are not caused by the tropospheric aerosol effect but the results of dynamic process, and the changes of longwave radiative heating rate are in response to temperature changes and mitigate the change. The process of stratospheric chemical, dynamic and radiation process are tightly coupled together. By comparison, the experiment group A including stratospheric chemical process and experiment group B not including stratospheric chemical process, it shows that the changes of temperature and wind are different in the tropospheric aerosols direct effect on stratosphere. The stratospheric chemical process is of vital importance on the tropospheric aerosols effects on stratospheric climate. Stratospheric chemical process has different effects in different seasons and in different regions, polar and high-altitude regions are considered to be mostly affected, in addition, stratospheric chemical process also has great influence on the upper stratosphere. The temperature variation can reach 6 K at the most, and zonal wind variation can also reach 12 m/s. The tropospheric aerosols influence the tropospheric radiative balance, tropospheric temperature, atmospheric circulation and EP flux, and changes in EP flux indicate the planetary wave propagation changes.Planetary wave propagation changes make the stratospheric climate change: Stratospheric temperature, and wind field change, stratospheric ozone and radiation and dynamic processes are closely linked and influenced by each other, the temperature and wind changes will influence the concentration of ozone. Polar and high-latitude regions are considered to be mostly affected, and the impact on southern high latitudes is greater than that on northern high latitudes. The temperature variation can reach 10 K at the most, zonal wind variation can also reach 12 m/s and ozone mixing ratio can decline for 0.8×10
-6 at the most at 20 hPa in the lower Antarctic stratosphere, while in most other areas the temperature change does not exceed 1 K.