海盐气溶胶和硫酸盐气溶胶在云微物理过程中的作用
THE IMPACTS OF SEA-SALT AND NSS-SULFATE AEROSOLS ON CLOUD MICROPROPERTIES
-
摘要: 利用大气气溶胶和云分档模式研究海盐气溶胶和硫酸盐气溶胶在云微物理过程中的作用, 计算结果表明:云中液态水含量随高度的分布并不随海盐、硫酸盐的数目以及云团上升速度的变化而变化; 随着云滴数目的增加, 云滴的有效半径会减小; 硫酸盐对云滴数目影响起主导作用, 海盐在水汽相对充足情况下增加了云滴数目, 在水汽相对不足的情况下减少了云滴数目; 硫酸盐粒子浓度特别强的情况下 (人类活动污染比较严重时), 如果水汽相对不足, 云滴数目会明显小于硫酸盐粒子浓度; 而海盐粒子的存在, 加剧了水汽的供应不足, 从而可以在很大程度上进一步降低云滴数目。也就是说, 在有些情况下, 如果不考虑海盐气溶胶的作用, 硫酸盐气溶胶对云特性的影响会被过高估计。Abstract: Impacts of nss-sulfate and sea-salt on marine clouds microphysical properties are investigated using a mutil-component size-resolving aerosol model. Numerical results show that the vertical distribution of liquid water content remains almost constant as sea salts number and updrafts increase. The effective radius decreases as cloud drops number increases. The number of cloud drops is dominated by nss-sulfate. Sea-salt plays a critical role in cloud microphysical processes. Due to its large radius sea-salt particles are activated into cloud drops in the initial cloud development. Sea-salt activation decreases supersaturation by consuming water vapor and suppresses nss-sulfate activation. Sea salts can enhance cloud drops number concentration under the case of large updrafts and decrease under the case of low updrafts. Nss-sulfate indirect forcing may be overestimated in some conditions (such as updraft is low) because of the presence of sea-salt particles.
-
Key words:
- Sea-salt;
- Nss-sulfate;
- Aerosol;
- Cloud microphysics
-
图 2 硫酸盐粒子浓度分别为(a)100cm-3, (b)300cm-3, (c) 1000cm-3情况,最大过饱和比随上升速度和海盐粒子浓度
(以水平风速表示,见表 1)的变化
表 1 海盐粒子浓度随水平风速的变化
表 2 云团上升速度0.5 m·s-1时, 云顶各微物理特性随模拟初始条件的变化
表 3 云团上升速度0.2 m·s-1, 云顶各微物理特性随模拟初始条件的变化
-
[1] Pruppacher H R, Klett J D. Microphysics of clouds and precipitation. Kluwer academic Publishers, 1997. [2] Shaw G. Bio-controlled thermostasis involving the sulfur cycle. Climate Change, 1983, 5:297-303. doi: 10.1007/BF02423524 [3] Nguyen B C, Bonsang B, Gaudry A. The role of the ocean in the global atmospheric sulfur cycle. J Geophys Res, 1983, 88:10903-10914. doi: 10.1029/JC088iC15p10903 [4] Charlson R J, Lovelock J E, Andreae M O, et al. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 1987, 326:655-661. doi: 10.1038/326655a0 [5] Twomey S. Atmospheric Aerosols. Elsevier Scientific Publishing Company, 1973. [6] Charlson R J, Schwartz S E, Hales J M, et al. Climate forceing by anthropogenic aerosol. Science, 1992, 255:423-430. doi: 10.1126/science.255.5043.423 [7] Langner J, Rodhe H, Crutzen P J, et al. Anthropogenic influence on the distribution of tropospheric sulfate aerosol. Nature, 1992, 359:712-716. doi: 10.1038/359712a0 [8] Ghan S J, Guzman G, Razzak H A. Competition between sea salt and sulfate particles as cloud condensation nuclei. J Atmos Sci, 1998, 55:3340-3347. doi: 10.1175/1520-0469(1998)055<3340:CBSSAS>2.0.CO;2 [9] 肖辉, 徐华英, 黄美元.积云中云滴谱形成的数值模拟研究 (一).大气科学, 1988, 12(2):121-130. [10] 肖辉, 徐华英, 黄美元.积云中云滴谱形成的数值模拟研究 (二).大气科学, 1988, 12(3):312-319. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198803010.htm [11] 许焕斌, 段英.云粒子谱演化研究中的一些问题.气象学报, 1999, 57(4):450-460. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199904005.htm [12] 赵春生.遥远海洋边界层中大气气溶胶的产生和演变过程的数值模拟:[博士学位论文].北京:北京大学, 1996. [13] 赵春生, 张代洲, 秦瑜.海洋边界层中大气气溶胶产生和发展的数值模拟.自然科学进展, 1998, 8(4):440-447. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ199804008.htm [14] O'Dowd C D, Jennings S G. Submicron particle, radon, and soot carbon characteristics over the northeast Atlantic. J Geophys Res, 1993, 98:1123-1135. doi: 10.1029/92JD02387 [15] O'Dowd C D, Consterdine I E, Lowe J A. Marine aerosol, sea-salt, and the marine sulfur cycle:A short review. Atmos Environ, 1997, 31:73-80. doi: 10.1016/S1352-2310(96)00106-9 [16] Hobbs P V. Aerosol-Cloud-Climate Interactions. Academic Press INC, 1993.