西北太平洋热带气旋强度和尺度协同变化特征

Covariation Relationship Between Tropical Cyclone Intensity and Size Change over the Northwest Pacific

  • 摘要: 热带气旋强度和尺度是衡量其破坏性的重要指标。利用美国联合热带气旋警报中心(JTWC)最佳路径数据集和全球飓风强度统计预测计划(SHIPS)再分析数据集,对2004—2020年7—11月西北太平洋热带气旋的强度和尺度(26 m·s-1大风平均半径)时空变化及协同变化特征统计分析发现,热带气旋强度与尺度在10月均达到峰值,主要表现为大而强且海上生命史长的热带气旋占比高于其他月份。热带气旋尺度伴随着强度增强(减弱)而增大(收缩),达到生命史最大尺度的时间平均滞后于最大强度时间40 h,且尺度快速膨胀及达到最大尺度的平均位置比发生快速增强和最大强度的位置更接近陆地。热带气旋初始尺度影响其最大尺度。71%大尺度涡旋在后期发展为大涡旋,其中发展为强热带气旋(不小于59 m·s-1)的占比为59%。热带气旋26 m·s-1大风平均半径对后期尺度的影响可达66 h,说明尺度预报中不能忽略初始尺度的影响。热带气旋最大尺度增长率发生在中等强度条件下(25~50 m·s-1),而最大强度增长率发生在中小尺度26 m·s-1大风平均半径(50~100 km)范围。在高空辐散强、相对湿度高、海洋热含量大,且中等及较弱环境垂直风切变条件下,尺度更易向外扩展,甚至发生快速膨胀。

     

    Abstract: Tropical cyclone (TC) has brought huge losses to coastal areas, whose intensity and size are both important indicators of destruction. The Northwest Pacific is the area with the most TCs generated. Due to the lack of effective observation methods and monitoring information, the TC operational centers of coastal countries or regions have not yet established complete TC outer-core size prediction and testing service. Thus, to select factors that significantly impact TC size changes and improve TC size forecast, statistical analysis is carried out on the climatological characteristics and the lifetime covariation characteristics of intensity and outer-core size (selected as the radius of damaging-force winds, R26) over the Northwest Pacific from July to November during 2004-2020, using the tropical cyclone best track data from JTWC (Joint Typhoon Warning Center) and SHIPS (Statistical Hurricane Intensity Prediction Scheme) reanalysis data. The results show that TC intensity and size peak in October, mainly showing a higher proportion of strong and large-sized TCs with longer lifetime at sea than in other months. Generally, the TC size expands with the increase in intensity and shrinks as the TC weakens. TCs reach the lifetime maximum size (LMS) later than the lifetime maximum intensity (LMI), with a mean lag time of 40 hours. Compared to the TC rapid intensification and LMI, the mean meridional positions of TC rapid expansion and LMS are closer to the coastal continent. Initial vortex size of TC affects the size development, especially LMS. Specifically, 58% of small initial vortices maintain the size in the small to medium category, while 71% of vortices with large initial size develop to large vortices in later periods, with 59% intensify to strong TCs (no less than 59 m·s-1) at LMI stage. Compared to small initial vortices, vortices with larger initial sizes tend to attain the greater integrated kinetic energy. The size of the latter stage has a high correlation (no less than 0.45) with the initial R26 for 66 h, indicating that the initial size of TCs can be a key predictor. The peak of size change rate (ΔR26) is located at moderate intensity (25~50 m·s-1) and the peak intensity change rate (ΔVmax) is located at medium and small size (50-100 km). The outer-core size is more likely to expand outward and even leads to rapid expansion under the conditions of stronger upper air divergence, higher relative humidity, larger ocean heat content and moderate vertical shear.

     

/

返回文章
返回