The Accuracy Test of Retrieved Precipitation Water Vapor Based on Beidou Observations
-
摘要: 采用上海市气象局建立的北斗气象站的2014年观测数据和我国自主研发的精密导航数据处理软件PANDA (position and navigation data analysist) 实现了基于北斗数据的大气水汽总量 (precipitable water vapor,PWV) 反演,并将利用北斗卫星信号解算的大气水汽总量 (WBD) 结果与目前较为成熟的GPS卫星反演结果 (WGPS) 和无线电探空反演结果 (WRadio) 进行对比,研究表明:反演的WBD与WGPS的均方根误差均低于3.5 mm,反演的WBD与WRadio的均方根误差为3.6 mm,两种对比方式的相关系数均在0.95以上,反演方法以及地理位置的差异对于反演结果有一定影响;反演的WBD能够很好地反映出大气中水汽的变化特征,对于气象短时临近预报、气候分析有指示作用。Abstract: The Beidou Navigation Satellite System is an independent system under construction in China. Observations of Beidou can be used to retrieve atmospheric precipitation water vapor (PWV) and provide information of water vapor with high precise and high real time. Beidou meteorological observation network is built by Shanghai Meteorological Bureau with PANDA (position and navigation data analysist) and M300C_GNSS, UNICORE-UB240 Beidou receivers, and the atmospheric precipitation water vapor is acquired. First, satellite data is received by Beidou meteorological observations and satellite orbit files are downloaded synchronously, and then zenith total delay (ZTD) is calculated by PANDA modules, and at last the PWV is retrieved based on surface meteorological parameters observed by automatic weather stations.Results of PWV retrieved by Beidou data (WBD) are compared with both PWV retrieved by GPS data (WGPS) and radiosonde data (WRadio), as the technology of them are mature. WGPS is retrieved by two methods: One is GAMIT (GPS at MIT) with the method of double difference phase observation, the other is PANDA with the method of precise point positioning. WRadio is retrieved by the method of water vapor integration from different pressure levels. The horizontal distance difference between corresponding observations is no more than 10 km, the elevation difference between GPS and Beidou observations is no more than 5 m, and the elevation difference between radiosonde and Beidou observations is about 30 m. Results show that the root mean square error (RMSE) between WBD and WGPS is no more than 3.5 mm, the correlation coefficient between them is over 0.95, and the RMSE between WBD and WGPS-P is smaller than that between WBD and WGPS-G, which means that the retrieve method has certain influence on results of PWV. The RMSE between WBD and WGPS-Radio is about 3.6 mm, the correlation coefficient between them is over 0.96, and WBD is on the high side compared with WGPS-Radio. WBD can well reflect the temporal changing characteristics of water vapor in the atmosphere and has corresponding relations with precipitation, which plays an important role in short-term weather forecast and climate analysis. The accuracy of WBD relies much on the precise ephemeris of Beidou.With the development of the Beidou Navigation Satellite System, the accuracy of PWV based on Beidou observations can surpass that based on GPS observations. Therefore, making the best of the Beidou Navigation Statellite System and improving meteorological service with WBD is important for the modernization of meteorology.
-
Key words:
- the Beidou Navigation Statellite System;
- PWV;
- GPS
-
表 1 目前在轨运行的北斗卫星信息
Table 1 Information of Beidou satellite on-orbit
卫星种类 卫星编号 地球静止轨道卫星 G1,G3,G4,G5,G6 倾斜地球同步
轨道卫星IGSO1,IGSO2,IGSO3,
IGSO4,IGSO5中圆地球轨道卫星 M3,M4,M5,M6 表 2 3种大气水汽总量计算反演的结果比较
Table 2 Statistical results of WBD, WGPS and WRadio
站点 对比方式 样本量 均方根误差/mm 平均偏差/mm 相关系数 南汇北斗站与南汇GPS站 WBD和WGPS-G 734 2.90 1.21 0.9588 WBD和WGPS-P 734 2.77 1.09 0.9698 遥感中心北斗站与莘庄GPS站 WBD和WGPS-G 657 3.43 1.05 0.9531 WBD和WGPS-P 657 3.28 0.97 0.9762 临港北斗站与临港GPS站 WBD和WGPS-G 1849 3.44 -1.18 0.9577 WBD和WGPS-P 1849 2.89 1.44 0.9748 金山北斗站与金山GPS站 WBD和WGPS-G 1382 3.24 -0.47 0.9502 WBD和WGPS-P 1382 3.15 1.75 0.9664 罗泾北斗站与宝山探空站 WBD和WRadio 127 3.64 1.24 0.9624 -
[1] 汪波, 曾昊川.基于北斗卫星应急传输国家气象自动站功能设计.信息通信, 2013(9):70-72. http://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201309038.htm [2] 张恩红, 曹云昌, 朱彬.北斗探空系统研发及其测风性能初步分析.应用气象学报, 2013, 24(4):464-471. doi: 10.11898/1001-7313.20130409 [3] Bevis M, Businger S, Chiswell S R, et al.GPS meteorology: Mapping zenith wet delays onto precipitable water.Appl Meteor, 1994, 33:379-386. doi: 10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2 [4] Duan J P, Bevis M, Fang P.GPS Meteorology:Direct estimation of the absolute value of precipitable water.J Applied Meteor, 1996, 35:830-838. doi: 10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2 [5] 毛节泰.GPS的气象应用.气象科技, 1993, 21(4):45-49. http://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201104022.htm [6] Liao Y A, Huang C Y.GPS observation of PW during the passage of a typhoon.Earth Planet Space, 2000, 52:709-712. doi: 10.1186/BF03352269 [7] Rocken C, Hove T V.GPS/STORM-GPS sensing of atmospheric water vapor for meteorology.J Atmos Ocean Tech, 1995, 12(3):468-478. doi: 10.1175/1520-0426(1995)012<0468:GSOAWV>2.0.CO;2 [8] 叶其欣, 杨露华, 丁金才.GPS/PWV资料在强对流天气系统中的特征分析.暴雨灾害, 2008, 27(2):141-148. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200802009.htm [9] 曹云昌, 方宗义, 李成才, 等.利用GPS和云图资料监测北京地区中小尺度降水的研究.高原气象, 2005, 24(1):91-96. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX20050100D.htm [10] 李国平, 黄丁发.GPS气象学研究及应用的进展与前景.气象科学, 2005, 25(6):651-661. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200506012.htm [11] 王小亚, 朱文耀, 严豪健, 等.地面GPS探测大气可降水量的初步结果.大气科学, 1999, 23(5):605-612. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199905010.htm [12] 宋淑丽, 严文耀, 丁金才, 等.上海GPS综合应用网对2002年长江三角洲地区入海过程的监测.天文学进展, 2003, 21(2): 180-184. http://www.cnki.com.cn/Article/CJFDTOTAL-TWJZ200302007.htm [13] 陈娇娜, 李国平, 黄文诗, 等.华西秋雨天气过程中GPS遥感水汽总量演变特征.应用气象学报, 2009, 20(6):753-760. doi: 10.11898/1001-7313.20090614 [14] 丁海燕, 李青春, 郑祚芳, 等.利用北京GPS监测网分析夏季暴雨的水汽特征.应用气象学报, 2012, 23(1):47-58. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120106&flag=1 [15] 李延兴, 徐宝祥, 胡新康, 等.应用地基GPS技术遥感大气柱水汽量的试验研究.应用气象学报, 2001, 12(1):61-69. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010107&flag=1 [16] 曹晓刚, 丁金才, 叶其欣, 等.利用水汽总量资料诊断入梅时间的方法.应用气象学报, 2007, 18(6):791-801. doi: 10.11898/1001-7313.200706121 [17] 杜明斌, 杨引明, 丁金才.COSMIC反演精度和有关特性分析.应用气象学报, 2009, 20(5):586-593. doi: 10.11898/1001-7313.20090510 [18] 郝丽萍, 邓佳, 李国平, 等.一次西南涡持续暴雨的GPS大气水汽总量特征.应用气象学报, 2013, 24(2):230-239. doi: 10.11898/1001-7313.20130211 [19] 杨元喜, 李金龙, 徐君毅, 等.中国北斗卫星导航系统对全球PNT用户的贡献.科学通报, 2011, 56(21):1734-1740. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201121009.htm [20] 施创, 赵齐乐, 李敏, 等.北斗卫星导航系统的精密定轨与定位研究.中国科学:地球科学, 2012, 42(6):854-861. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201206007.htm [21] 袁招洪, 丁金才, 陈永林.中尺度数值预报模式预报水汽与GPS观测的比较研究.大气科学, 2004, 28(3):433-440. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200403009.htm [22] 王小亚, 朱文耀, 严豪健, 等.地面GPS探测大气可降水量的初步结果.大气科学, 1999, 23(5):605-612. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199905010.htm [23] 何平, 徐宝祥, 周秀骥, 等.地基GPS反演大气水汽总量的初步试验.应用气象学报, 2002, 13(2):179-183. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020222&flag=1 [24] 丁金才, 叶其欣, 马晓星, 等.区域GPS气象网站点合理布设的几点依据.气象, 2006, 32(2):34-39. doi: 10.7519/j.issn.1000-0526.2006.02.007 [25] 刘敏, 郭鹏, 叶其欣, 等.上海地区地基GPS水汽三维层析技术和初步应用.天文学报, 2010, 51(3):299-308. http://www.cnki.com.cn/Article/CJFDTOTAL-TWXB201003012.htm [26] 李延兴, 徐宝祥, 胡新康, 等.用地基GPS观测站遥测大气含水量和可降雨量的理论基础与实验结果.中国科学:A辑, 2000, 30(增刊Ⅰ):107-110. http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK2000S1027.htm [27] 刘国纬.水文循环的大气过程.北京:科学出版社, 1997:27-28. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [28] 杨引明, 朱雪松, 刘敏, 等.长江三角洲地区GPS大气可降水量统计特征分析.高原气象, 2008, 27(增刊Ⅰ):150-157. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX2008S1020.htm