留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BCC S2S模式对亚洲夏季风准双周振荡预报评估

贺铮 徐邦琪 高迎侠

贺铮, 徐邦琪, 高迎侠. BCC S2S模式对亚洲夏季风准双周振荡预报评估. 应用气象学报, 2018, 29(4): 436-448. DOI: 10.11898/1001-7313.20180405..
引用本文: 贺铮, 徐邦琪, 高迎侠. BCC S2S模式对亚洲夏季风准双周振荡预报评估. 应用气象学报, 2018, 29(4): 436-448. DOI: 10.11898/1001-7313.20180405.
He Zheng, Hsu Pang, Gao Yingxia. Evaluation of quasi-biweekly oscillation prediction in the Asian summer monsoon regions by BCC S2S model. J Appl Meteor Sci, 2018, 29(4): 436-448. DOI:  10.11898/1001-7313.20180405.
Citation: He Zheng, Hsu Pang, Gao Yingxia. Evaluation of quasi-biweekly oscillation prediction in the Asian summer monsoon regions by BCC S2S model. J Appl Meteor Sci, 2018, 29(4): 436-448. DOI:  10.11898/1001-7313.20180405.

BCC S2S模式对亚洲夏季风准双周振荡预报评估

DOI: 10.11898/1001-7313.20180405
资助项目: 

国家重点基础研究发展计划 2015CB453200

详细信息
    通信作者:

    徐邦琪, 邮箱: pangchi@nuist.edu.cn

Evaluation of Quasi-biweekly Oscillation Prediction in the Asian Summer Monsoon Regions by BCC S2S Model

  • 摘要: 利用1994-2013年ERA-Interim及NCEP/NCAR再分析数据,对国家气候中心(BCC)次季节到季节尺度模式(S2S)1994-2013年的回报试验数据进行亚洲季风区准双周振荡(QBWO)预报能力评估,并诊断模式预报误差来源。结果表明:BCC S2S模式对QBWO的预报能力随着预报提前时间的增长而降低,9 d后预报技巧明显减弱,其周期、传播特征和强度出现误差;在提前9 d预报中,印度洋地区QBWO对流-环流系统结构松散,信号偏弱,对流向东传播,这与印度洋平均态的预报误差有关,夏季对流平均态低层水汽场在西太平洋和阿拉伯海较强,而东印度洋、孟加拉湾一带偏弱;西北太平洋地区QBWO具有向西北传播的特征,但强度偏弱,可能原因是预报低估了QBWO对流西北侧低层涡度的超前信号,经涡度方程诊断发现,地转涡度平流正贡献微弱,相对涡度平流在对流西北侧引发负涡度,从而减弱了对流西北侧由低层正涡度引发的有利条件。
  • 图  1  1994—2013年夏季(5—10月)季节内尺度MV-EOF的OLR(填色)和850 hPa风场(矢量)的第3和第4模态分布

    (a)再分析数据第3模态,(b)模式提前1 d预报第3模态,(c)模式提前6 d预报第3模态,(d)模式提前11 d预报第3模态,(e)模式提前16 d预报第3模态,(f)再分析数据第4模态,(g)模式提前1 d预报第4模态,(h)模式提前6 d预报第4模态,(i)模式提前11 d预报第4模态,(j)模式提前16 d预报第4模态

    Fig. 1  The third mode and the fourth mode of intraseasonal OLR(the shaded) with 850 hPa wind(the vector) during boreal summer(May-October) in 1994-2013 based on MV-EOF

    (a)the third mode of reanalysis, (b)the third mode of 1 d lead time prediction, (c)the third mode of 6 d lead time prediction, (d)the third mode of 11 d lead time prediction, (e)the third mode of 16 d lead time prediction, (f)the fourth mode of reanalysis, (g)the fourth mode of 1 d lead time prediction, (h)the fourth mode of 6 d lead time prediction, (i)the fourth mode of 11 d lead time prediction, (j)the fourth mode of 16 d lead time prediction

    图  2  BCC S2S模式预报QBWO的双变量时间相关系数(a)MV-EOF,(b)投影法

    Fig. 2  Forecast skills of BCC S2S model measured by multi-variate anomaly correlation coefficient of QBWO (a)MV-EOF, (b)projections

    图  3  QBWO第3、第4模态对应时间系数的超前-滞后相关系数

    Fig. 3  Lead-lag correlation coefficients between time series of the third mode and the fourth mode associated with QBWO

    图  4  MV-EOF第4模态对应的时间系数功率谱分布(虚线为红噪音检验)

    (a)再分析数据,(b)模式提前9 d预报

    Fig. 4  Power spectra of time series of the fourth mode associated with QBWO

    (the dashed line is Markov red noise spectrum) (a)the reanalysis, (b)9 d lead time prediction

    图  5  再分析数据和模式提前9 d预报QBWO生命周期8位相合成OLR(填色)和850 hPa风场(矢量)

    Fig. 5  8-phase composited anomalous OLR(the shaded) and 850 hPa wind(the vector) of QBWO life cycle by reanalysis and 9 d lead time prediction

    图  6  1994—2013年夏季(5—10月)气候平均分布(a)再分析数据OLR,(b)模式提前9 d预报OLR,(c)再分析数据700~1000 hPa比湿,(d)模式提前9 d预报700~1000 hPa比湿

    Fig. 6  Climatological mean during boreal summer(May-October) of 1994-2013 (a)OLR of reanalysis, (b)OLR of 9 d lead time prediction, (c)700-1000 hPa specific humidity of reanalysis, (d)700-1000 hPa specific humidity of 9 d lead time prediction

    图  7  1994—2013年夏季(5—10月)10~30 d OLR(填色)和850 hPa涡度(等值线,单位:10-6 s-1,由0.5×10-6 s-1起始,每条线间隔为0.5×10-6 s-1)与MV-EOF第4模态对应时间系数超前回归

    (黄色框为同期对流西北侧涡度最大值中心)

    Fig. 7  Lead regression coefficients of 10-30 d filtered OLR(the shaded, unit:W·m-2) and 850 hPa vorticity(the contour, unit:10-6 s-1, starting from 0.5×10-6 s-1 with an interval of 0.5×10-6 s-1) to time series of the fourth mode(the yellow box marks the positive vorticity center to the northwest of convection of lag 0 d) during boreal summer(May-Oct) of 1994-2013

    图  8  再分析数据对流西北侧涡度大值中心的涡度方程收支诊断

    Fig. 8  Diagnostic results of vorticity equation averaged over the positive vorticity center to the northwest of convection

    图  9  1994—2013年夏季(5—10月)10~30 d 850 hPa的涡度方程收支项(等值线,单位:10-12 s-2)和OLR(填色)与MV-EOF第4模态对应时间系数的同期回归

    Fig. 9  Regression coefficients of 10-30 d filtered 850 hPa vorticity equation budget terms (the contour, unit:10-12 s-2) and OLR(the shaded) to time series of the fourth mode during boread summer(May-Oct) of 1994-2013

  • [1] Madden R A, Julian P R.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific.J Atmos Sci, 1971, 28(5):702-708. doi:  10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [2] Madden R A, Julian P R.Description of global-scale circulation cells in the tropics with a 40-50 day period.J Atmos Sci, 1972, 29(6):1109-1123. doi:  10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    [3] Yasunari T.A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuation during the summer monsoon over India.J Meteor Soc Japan, 1980, 58(3):225-229. doi:  10.2151/jmsj1965.58.3_225
    [4] 任宏利, 吴捷, 赵崇博, 等.MJO预报研究进展.应用气象学报, 2015, 26(6):658-668. doi:  10.11898/1001-7313.20150602
    [5] Chen T C, Chen J M.The 10-20-day mode of the 1979 Indian monsoon:Its relation with the time variation of monsoon rainfall.Mon Wea Rev, 1993, 121(9):2465-2482. doi:  10.1175/1520-0493(1993)121<2465:TDMOTI>2.0.CO;2
    [6] Zhang C D.The Madden-Julian Oscillation.RevGeophys, 2005, 43(2):RG2003. http://cn.bing.com/academic/profile?id=2c42b15104fc377d14e716ee00220433&encoded=0&v=paper_preview&mkt=zh-cn
    [7] 李崇银, 凌健, 宋洁, 等.中国热带大气季节内振荡研究进展.气象学报, 2014, 72(5):817-834. doi:  10.11676/qxxb2014.059
    [8] Vitart F, Ardilouze C, Bonet A, et al.The sub-seasonal to seasonal prediction (S2S) project database.Bull Amer Meteor Soc, 2017, 98(1):163-173. doi:  10.1175/BAMS-D-16-0017.1
    [9] 李崇银.大气中的季节内振荡.大气科学, 1990, 14(1):32-45. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200407004.htm
    [10] 林爱兰, Li Tim, 李春晖.热带夏季风场与对流场季节内振荡传播模比较.应用气象学报, 2010, 21(5):545-557. doi:  10.11898/1001-7313.20100504
    [11] Lee J Y, Wang B, Wheeler M C, et al.Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region.Clim Dyn, 2013, 40(1-2):493-509. doi:  10.1007/s00382-012-1544-4
    [12] Webster P J.Monsoon:Processes, predictability and the prospects for prediction.J Geophys Res, 1998, 103(C7):14451-14510. doi:  10.1029/97JC02719
    [13] Annamalai H, Slingo J M.Active/break cycles:Diagnosis of the intraseasonal variability of the Asian summer monsoon.Clim Dyn, 2001, 18(1-2):85-102. doi:  10.1007/s003820100161
    [14] 陈官军, 魏凤英, 姚文清, 等.基于南海夏季风季节内振荡的降水延伸预报试验.应用气象学报, 2016, 27(3):273-284. doi:  10.11898/1001-7313.20160302
    [15] 王遵娅, 丁一汇.夏季长江中下游旱涝年季节内振荡气候特征.应用气象学报, 2008, 19(6):710-715. doi:  10.11898/1001-7313.20080610
    [16] 林爱兰, 李春晖, 郑彬, 等.6月MJO对广东降水调制与直接影响系统的联系.应用气象学报, 2013, 24(4):397-406. doi:  10.11898/1001-7313.20130402
    [17] Hsu P C, Lee J Y, Ha K J.Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China.Int J Climatol, 2016, 36(3):1403-1412. doi:  10.1002/joc.2016.36.issue-3
    [18] Hsu P C, Lee J Y, Ha K J, et al.Influences of boreal summer intraseasonal oscillation on heat waves in monsoon Asia.J Climate, 2017, 30(18):7191-7211. doi:  10.1175/JCLI-D-16-0505.1
    [19] 温敏, 张人禾.苏门答腊附近大气准双周振荡的可能维持机制.科学通报, 2005, 50(9):938-940. http://www.oalib.com/paper/1681857
    [20] Chen G H, Sui C H.Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer.J Geophys Res, 2010, 115(D14113):1-14. http://cn.bing.com/academic/profile?id=4b8e4dad1ca758d00c8bca2d1903a7fb&encoded=0&v=paper_preview&mkt=zh-cn
    [21] 李春晖, 何超, 郑彬, 等.夏季(5-10月)南海准双周和20~60天振荡的年代际变化特征.热带气象学报, 2016, 32(5):577-587. http://www.cnki.com.cn/Article/CJFDTotal-DQXK405.005.htm
    [22] 孙长, 毛江玉, 吴国雄.大气季节内振荡对夏季西北太平洋热带气旋群发性的影响.大气科学, 2009, 33(5):950-958. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200905008.htm
    [23] Zhao H K, Jiang X A, Wu L G.Modulation of Northwest Pacific tropical cyclone genesis by the intraseasonal variability.J Meteor Soc Japan, 2015, 93(1):81-97. doi:  10.2151/jmsj.2015-006
    [24] 李春晖, 刘燕, 李霞, 等.热带西北太平洋10~30 d振荡对南海夏季风影响.应用气象学报, 2016, 27(3):293-302. doi:  10.11898/1001-7313.20160304
    [25] 占瑞芬, 孙国武, 赵兵科, 等.中国东部副热带夏季风降水的准双周振荡及其可能维持机制.高原气象, 2008, 7(增刊I):98-108. http://www.cqvip.com/QK/91655X/2008B12/30744362.html
    [26] Liu X W, Wu T W, Yang S, et al.Performance of the seasonal forecasting of the Asian-western Pacific summer monsoon hindcasted by BCC_CSM1.1(m).Adv Atmos Sci, 2015, 32(8):1156-1172. doi:  10.1007/s00376-015-4194-8
    [27] 苗芮, 温敏, 张人禾.2010年华南前汛期持续性降水异常与准双周振荡.热带气象学报, 2017, 33(2):155-166. https://www.cnki.com.cn/lunwen-1016121549.nh.html
    [28] Kemball-Cook S, Wang B.Equatorial waves and air-sea interaction in the boreal summer intraseasonal oscillation.J Climate, 2001, 14(13):2923-2942. doi:  10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2
    [29] Jiang X A, Li T, Wang B.Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation.J Climate, 2004, 17(5):1022-1039. doi:  10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2
    [30] Bellon G, Sobel A H.Instability of the axisymmetric monsoon flow and intraseasonal oscillation.J Geophys Res, 2008, 113(D07108):1-18. http://cn.bing.com/academic/profile?id=e6352737074b2691e30f63c415e8967c&encoded=0&v=paper_preview&mkt=zh-cn
    [31] Wang B, Xie X.A model for the boreal summer intra-seasonal oscillation.J Atmos Sci, 1997, 54(1):72-86. doi:  10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2
    [32] Hsu H H, Weng C H.Northwestward propagation of the intra-seasonal oscillation in the western North Pacific during the boreal summer:Structure and mechanism.J Climate, 2001, 14(18):3834-3850. doi:  10.1175/1520-0442(2001)014<3834:NPOTIO>2.0.CO;2
    [33] Tsou C H, Hsu P C, Kau W S, et al.Northward and northwestward propagation of 30-60 day oscillation in the tropical and extra-tropical western North Pacific.J Meteor Soc Japan, 2005, 83(5):711-726. doi:  10.2151/jmsj.83.711
    [34] Waliser D E.Predictability of Tropical Intraseasonal Variability.Cambridge:Cambridge University Press, 2006:275-305. doi:  10.1007/s13143-010-0013-4
    [35] 丁一汇, 梁萍.基于MJO的延伸预报.气象, 2010, 36(7):111-122. doi:  10.7519/j.issn.1000-0526.2010.07.018
    [36] 吴统文, 宋连春, 刘向文, 等.国家气候中心短期气候预测模式系统业务化进展.应用气象学报, 2013, 24(5):533-543. doi:  10.11898/1001-7313.20130503
    [37] Lin J L, Lee M I, Kim D, et al.The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves.J Climate, 2008, 21(5):883-909. doi:  10.1175/2007JCLI1790.1
    [38] Seo K H, Wang W Q, Gottschalck J, et al.Evaluation of MJO forecast skill from several statistical and dynamical forecast models.J Climate, 2009, 22(9):2372-2388. doi:  10.1175/2008JCLI2421.1
    [39] Kang I S, Kim H M.Assessment of MJO predictability for boreal winter with various statistical and dynamical models.J Climate, 2010, 23(9):2368-2378.
    [40] Fu X H, Lee J Y, Wang B, et al.Intraseasonal forecasting of Asian summer monsoon in four operational and research models.J Climate, 2013, 26(12):4186-4203. doi:  10.1175/JCLI-D-12-00252.1
    [41] Lee S S, Wang B, Waliser D E, et al. Predictability and prediction skill of the boreal summer intraseasonal oscillation in the Intraseasonal Variability Hindcast Experiment.Clim Dyn, 2015, 45(7-8):2123-2135. doi:  10.1007/s00382-014-2461-5
    [42] Zhao C, Zhou T J, Song L C, et al. The boreal summer intraseasonal oscillation simulated by four Chinese AGCMs participating in the CMIP5 project.Adv Atmos Sci, 2014, 31(5):1167-1180. doi:  10.1007/s00376-014-3211-7
    [43] 吴捷, 任宏利, 赵崇博, 等.国家气候中心MJO监测预测业务产品研发及应用.应用气象学报, 2016, 27(6):641-653. doi:  10.11898/1001-7313.20160601
    [44] Fang Y J, Wu P L, Wu T W, et al.An evaluation of boreal summer intra-seasonal oscillation simulated by BCC_AGCM2.2.Clim Dyn, 2016, 48(9-10):3409-3423. http://cn.bing.com/academic/profile?id=00ccb81b98943e86ba6b7611a5d76880&encoded=0&v=paper_preview&mkt=zh-cn
    [45] Liu X W, Wu T W, Yang S, et al.MJO prediction using the sub-seasonal to seasonal forecast model of Beijing Climate Center.Clim Dyn, 2016, 48(9-10):3283-3307. http://cn.bing.com/academic/profile?id=4d132df5a6bddf341083744618c3922a&encoded=0&v=paper_preview&mkt=zh-cn
    [46] Liebmann B, Smith C A.Description of a complete (interpolated) outgoing longwave radiation dataset.Bull Amer Meteor Soc, 1996, 77(6):1275-1277. http://cn.bing.com/academic/profile?id=f45876087ea92ee7472ee8765a838604&encoded=0&v=paper_preview&mkt=zh-cn
    [47] Dee D P, Uppala S M, Simmons A J, et al.The ERA-Interim reanalysis:Configuration and performance of the data assimilation system.Quart J Roy Meteor Soc, 2011, 137(656):553-597. doi:  10.1002/qj.v137.656
    [48] Kalnay E, Kanamitsu M, Kistler R, et al.The NCEP/NCAR 40-year reanalysis project.Bull Amer Meteor Soc, 1996, 77(3):437-471. doi:  10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [49] Wheeler M, Hendon H.An all-season real-time multivariate MJO index:Development of an index for monitoring and prediction.Mon Wea Rev, 2004, 132(8):1917-1932. doi:  10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
    [50] Lin H, Brunet G, Derome J.Forecast skill of the Madden-Julian oscillation in two Canadian atmospheric models.Mon Wea Rev, 2008, 136(11):4130-4149. doi:  10.1175/2008MWR2459.1
    [51] Xiang B Q, Zhao M, Jiang X A, et al.The 3-4-Week MJO prediction skill in a GFDL coupled model.J Climate, 2015, 28(13):5351-5364. doi:  10.1175/JCLI-D-15-0102.1
    [52] Honton J R.An Introduction to Dynamic Meteorology.New York:Academic Press, 1979.
  • 加载中
图(9)
计量
  • 文章访问数:  3502
  • HTML全文浏览量:  1181
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-09
  • 修回日期:  2018-05-17
  • 刊出日期:  2018-07-31

目录

    /

    返回文章
    返回