留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于冬小麦农业气候分区的WOFOST模型参数标定

李颖 赵国强 陈怀亮 余卫东 苏伟 程耀达

李颖, 赵国强, 陈怀亮, 等. 基于冬小麦农业气候分区的WOFOST模型参数标定. 应用气象学报, 2021, 32(1): 38-51. DOI: 10.11898/1001-7313.20210104. DOI: 10.11898/1001-7313.20210104
引用本文: 李颖, 赵国强, 陈怀亮, 等. 基于冬小麦农业气候分区的WOFOST模型参数标定. 应用气象学报, 2021, 32(1): 38-51. DOI: 10.11898/1001-7313.20210104. DOI: 10.11898/1001-7313.20210104
Li Ying, Zhao Guoqiang, Chen Huailiang, et al. WOFOST Model parameter calibration based on agro-climatic division of winter wheat. J Appl Meteor Sci, 2021, 32(1): 38-51. DOI:  10.11898/1001-7313.20210104
Citation: Li Ying, Zhao Guoqiang, Chen Huailiang, et al. WOFOST Model parameter calibration based on agro-climatic division of winter wheat. J Appl Meteor Sci, 2021, 32(1): 38-51. DOI:  10.11898/1001-7313.20210104

基于冬小麦农业气候分区的WOFOST模型参数标定

DOI: 10.11898/1001-7313.20210104
资助项目: 

国家自然科学基金项目 41805090

中国气象局·河南省农业气象保障与应用技术重点开放实验室开放基金项目 AMF201802

中国气象局·河南省农业气象保障与应用技术重点开放实验室开放基金项目 AMF201807

河南省气象局气象科学技术研究项目重点项目 KZ201803

详细信息
    通信作者:

    赵国强, z13756188998@163.com

WOFOST Model Parameter Calibration Based on Agro-climatic Division of Winter Wheat

  • 摘要: 以1981—2010年河南省113个气象观测站影响冬小麦生长及产量形成的主要气象因素为区划指标,利用K均值聚类算法,将河南省划分为5个农业气候生态区。根据2013—2017年地面农业气象观测数据,利用Sobol全局敏感性分析方法,各分区选择总敏感指数大于0.01的作物参数,得到9种敏感参数。以产量与叶面积指数为代价函数,采用差分进化马尔科夫链蒙特卡洛方法对敏感参数进行分区标定,并使用2018—2019年观测数据进行验证。结果表明:分区进行参数标定时,叶面积指数动态模拟精度和产量模拟精度均显著优于使用默认参数或整个研究区使用同一套优化参数时的精度,其中,使用分区调参后验平均值模拟关键生育期叶面积指数的总均方根误差为0.655,其模拟产量的均方根误差为672.016 kg·hm-2。该方法将农业气候学知识与差分进化马尔科夫链蒙特卡洛优化算法相结合,通过合理、高效地分区域标定作物模型参数,可为作物模型区域应用和模型参数调整优化提供科学依据。
  • 图  1  河南省冬小麦农业气候分区

    Fig. 1  Agro-climatic division of winter wheat in Henan Province

    图  2  5个农业气候生态区参数的总敏感性指数

    Fig. 2  Total sensitivity index of parameters in five agro-climatic ecological zones

    图  3  2019年产量与叶面积指数验证结果

    Fig. 3  Verification results of yield and leaf area index in 2019

    表  1  不同区域冬小麦积温(单位:℃·d)

    Table  1  Accumulated temperature parameters of winter wheat in different zones(unit:℃·d)

    生育阶段 Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区 Ⅴ区
    播种至出苗 1170 1180 1100 1150 1250
    出苗至开花 600 620 610 600 610
    开花至成熟 110 120 120 130 120
    下载: 导出CSV

    表  2  待分析参数及其围绕默认值的变化比例

    Table  2  The proportion of changes of parameters to be analyzed around the default value

    参数 定义 最小比例 最大比例
    AM00 发育期为0时CO2最大同化速率 0.7 1.5
    AM10 发育期为1时CO2最大同化速率 0.7 1.5
    AM13 发育期为1.3时CO2最大同化速率 0.7 1.5
    AM20 发育期为2时CO2最大同化速率 0.7 1.5
    SL00 发育期为0时比叶面积 0.7 1.5
    SL05 发育期为0.5时比叶面积 0.7 1.5
    SL20 发育期为2时比叶面积 0.7 1.5
    FL 总物质分配到叶片的比例 0.5 2.0
    FO 总物质分配到储存器官的比例 0.8 1.2
    FR 总物质分配到根的比例 0.5 2.0
    SP 35℃时叶片的生命周期 0.7 1.5
    TB 出苗最低温度 0.5 1.5
    TD 初始总干物质重量 0.9 1.3
    TE 出苗最高有效温度 0.9 1.3
    TM00 日平均温度为0℃时CO2最大同化速率减小因子 0.7 1.5
    TM10 日平均温度为10℃时CO2最大同化速率减小因子 0.7 1.3
    TM15 日平均温度为15℃时CO2最大同化速率减小因子 0.7 1.5
    TM25 日平均温度为25℃时CO2最大同化速率减小因子 0.7 1.5
    TM35 日平均温度为35℃时CO2最大同化速率减小因子 0.7 1.5
    RD 根的相对死亡速率 0.9 1.0
    RG 叶面积指数最大日增量 0.9 1.3
    下载: 导出CSV

    表  3  参数标定所用建模数据和验证数据

    Table  3  Modeling data and verification data used for parameter calibration

    研究区 优化数据 验证数据
    年份 站点 年份 站点
    Ⅰ区 2013 林州
    2014 汤阴
    2015 安阳 2018—2019 汤阴
    2016 濮阳
    2017 范县
    Ⅱ区 2013 郑州
    2014 商丘
    2015 伊川 2018—2019 郑州
    2016 济源
    2017 郑州
    Ⅲ区 2013 许昌
    2014 许昌
    2015 黄泛区 2018—2019 黄泛区
    2016 驻马店
    2017 南阳
    Ⅳ区 2013 信阳
    2014 正阳
    2015 新野 2018—2019 潢川
    2016 潢川
    2017 固始
    Ⅴ区 2013 卢氏
    2014 三门峡
    2015 三门峡 2018—2019 卢氏
    2016 卢氏
    2017 卢氏
    下载: 导出CSV

    表  4  河南省Ⅰ区敏感参数的后验分布

    Table  4  The posteriori distribution of sensitive parameters in Zone Ⅰ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 1.369 1.414 1.470 0.00396 [1.361, 1.377]
    AM10 1.351 1.374 1.426 0.00301 [1.345, 1.357]
    AM13 0.729 0.722 0.704 0.00070 [0.728, 0.731]
    SL00 1.443 1.455 1.500 0.00130 [1.440, 1.445]
    SL05 0.774 0.770 0.707 0.00127 [0.771, 0.776]
    FL 1.904 1.932 1.994 0.00220 [1.900, 1.909]
    FO 0.857 0.856 0.860 0.00023 [0.856, 0.857]
    FR 1.423 1.429 1.487 0.00131 [1.421, 1.426]
    SP 0.831 0.829 0.826 0.00026 [0.831, 0.832]
    下载: 导出CSV

    表  5  河南省Ⅱ区敏感参数的后验分布

    Table  5  The posteriori distribution of sensitive parameters in Zone Ⅱ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 0.761 0.750 0.704 0.00176 [0.757, 0.764]
    AM10 1.397 1.410 1.412 0.00274 [1.392, 1.403]
    AM13 0.793 0.785 0.760 0.00235 [0.788, 0.798]
    SL00 1.350 1.361 1.458 0.00385 [1.342, 1.357]
    SL05 0.772 0.759 0.737 0.00195 [0.768, 0.775]
    FL 1.823 1.848 1.973 0.00496 [1.813, 1.833]
    FO 0.921 0.920 0.901 0.00055 [0.919, 0.922]
    FR 0.946 0.964 1.112 0.00573 [0.934, 0.957]
    SP 0.822 0.824 0.824 0.00034 [0.822, 0.823]
    下载: 导出CSV

    表  6  河南省Ⅲ区敏感参数的后验分布

    Table  6  The posteriori distribution of sensitive parameters in Zone Ⅲ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 0.715 0.711 0.702 0.00040 [0.714, 0.716]
    AM10 0.891 0.872 0.869 0.00319 [0.885, 0.897]
    AM13 0.738 0.730 0.700 0.00089 [0.737, 0.740]
    SL00 1.352 1.376 1.498 0.00296 [1.346, 1.358]
    SL05 1.082 1.067 1.144 0.00383 [1.075, 1.090]
    FL 1.326 1.334 1.215 0.00426 [1.317, 1.334]
    FO 0.809 0.807 0.802 0.00023 [0.809, 0.810]
    FR 0.790 0.787 0.794 0.00397 [0.782, 0.798]
    SP 0.932 0.938 0.940 0.00042 [0.932, 0.933]
    下载: 导出CSV

    表  7  河南省Ⅳ区敏感参数的后验分布

    Table  7  The posteriori distribution of sensitive parameters in Zone Ⅳ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 1.446 1.460 1.496 0.00094 [1.444, 1.447]
    AM10 1.118 1.127 0.744 0.00472 [1.109, 1.128]
    AM13 1.418 1.441 1.497 0.00151 [1.415, 1.421]
    SL00 1.174 1.188 0.918 0.00304 [1.168, 1.180]
    SL05 0.799 0.777 0.711 0.00164 [0.796, 0.802]
    FL 1.090 1.076 1.297 0.00250 [1.085, 1.095]
    FO 1.033 1.021 1.124 0.00076 [1.031, 1.034]
    FR 0.625 0.595 0.602 0.00198 [0.621, 0.629]
    SP 0.834 0.829 0.828 0.00027 [0.833, 0.834]
    下载: 导出CSV

    表  8  河南省Ⅴ区敏感参数的后验分布

    Table  8  The posteriori distribution of sensitive parameters in Zone Ⅴ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 1.082 1.070 1.333 0.00562 [1.071, 1.093]
    AM10 0.732 0.724 0.705 0.00068 [0.730, 0.732]
    AM13 0.728 0.721 0.708 0.00057 [0.727, 0.729]
    SL00 1.481 1.484 1.492 0.00036 [1.480, 1.481]
    SL05 0.718 0.715 0.708 0.00026 [0.717, 0.718]
    FL 1.880 1.885 1.792 0.00203 [1.876, 1.884]
    FO 0.937 0.935 0.915 0.00046 [0.936, 0.938]
    FR 0.532 0.527 0.502 0.00059 [0.531, 0.533]
    SP 0.738 0.741 0.748 0.00030 [0.738, 0.739]
    下载: 导出CSV

    表  9  河南省同一套敏感参数的后验分布

    Table  9  The posteriori distribution of sensitive parameters for the whole Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 0.758 0.747 0.756 0.00170 [0.755, 0.761]
    AM10 0.724 0.717 0.709 0.00072 [0.722, 0.725]
    AM13 0.714 0.711 0.702 0.00044 [0.714, 0.715]
    SL00 1.483 1.485 1.499 0.00048 [1.482, 1.484]
    SL05 0.712 0.709 0.701 0.00032 [0.711, 0.712]
    FL 1.855 1.853 1.856 0.00178 [1.851, 1.858]
    FO 0.901 0.899 0.892 0.00046 [0.900, 0.902]
    FR 0.553 0.544 0.538 0.00149 [0.550, 0.556]
    SP 0.896 0.896 0.906 0.00015 [0.895, 0.896]
    下载: 导出CSV
  • [1] Edwards D, Hamson M.Guide to Mathermatical Modeling.Boca Raton Florida, US:CRC Press, Inc., 1990.
    [2] 谢云, James R K.国外作物生长模型发展综述.作物学报, 2002, 28(2): 190-195. doi:  10.3321/j.issn:0496-3490.2002.02.009

    Xie Y, James R K.A review on the development of crop modeling and its application.Acta Agronomica Sinica, 2002, 28(2): 190-195. doi:  10.3321/j.issn:0496-3490.2002.02.009
    [3] Boote K J, Jones J W, Pickering N B.Potential uses and limitations of crop models.Agronomy Journal, 1996, 88: 704-716. doi:  10.2134/agronj1996.00021962008800050005x
    [4] 林忠辉, 莫兴国, 项月琴.作物生长模型研究综述.作物学报, 2003, 29(5): 750-758. doi:  10.3321/j.issn:0496-3490.2003.05.021

    Lin Z H, Mo X G, Xiang Y Q.Research advances on crop growth models.Acta Agronomica Sinica, 2003, 29(5): 750-758. doi:  10.3321/j.issn:0496-3490.2003.05.021
    [5] 高永刚, 顾红, 姬菊枝, 等.近43年来黑龙江气候变化对农作物产量影响的模拟研究.应用气象学报, 2007, 18(4): 532-538. doi:  10.3969/j.issn.1001-7313.2007.04.014

    Gao Y G, Gu H, Ji J Z, et al.Simulation study of climate change impact on crop yield in Heilongjiang Province from 1961 to 2003.J Appl Meteor Sci, 2007, 18(4): 532-538. doi:  10.3969/j.issn.1001-7313.2007.04.014
    [6] 张蕾, 侯英雨, 郑昌玲, 等.作物长势评估指数的设计与应用.应用气象学报, 2019, 30(5): 543-554. doi:  10.11898/1001-7313.20190503

    Zhang L, Hou Y Y, Zheng C L, et al.The construction and application of assessing index to crop growing condition.J Appl Meteor Sci, 2019, 30(5): 543-554. doi:  10.11898/1001-7313.20190503
    [7] 陈怀亮, 李颖, 田宏伟, 等.利用亚像元尺度信息改进区域冬小麦生长的模拟.生态学杂志, 2018, 37(7): 2221-2228.

    Chen H L, Li Y, Tian H W, et al.Improvement of regional-scale winter wheat growth modeling with sub-pixel information.Chinese Journal of Ecology, 2018, 37(7): 2221-2228.
    [8] Curnel Y, de Wit A J W, Duveiller G, et al.Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment.Agric For Meteorol, 2011, 151(12): 1843-1855. doi:  10.1016/j.agrformet.2011.08.002
    [9] 李颖, 陈怀亮, 田宏伟, 等.同化遥感信息与WheatSM模型的冬小麦估产.生态学杂志, 2019, 38(7): 2258-2264.

    Li Y, Chen H L, Tian H W, et al.Estimation of winter wheat yield based on coupling remote sensing information and WheatSM model.Chinese Journal of Ecology, 2019, 38(7): 2258-2264.
    [10] 孙琳丽, 马玉平, 景元书, 等.基于约束性分析的数据与作物模型同化方法.应用气象学报, 2013, 24(3): 287-296. doi:  10.3969/j.issn.1001-7313.2013.03.004

    Sun L L, Ma Y P, Jing Y S, et al.Assimilation of observations with crop growth model based on the constrained analysis of parameters.J Appl Meteor Sci, 2013, 24(3): 287-296. doi:  10.3969/j.issn.1001-7313.2013.03.004
    [11] 黄健熙, 黄海, 马鸿元, 等.基于MCMC方法的WOFOST模型参数标定与不确定性分析.农业工程学报, 2018, 34(16): 113-119. doi:  10.11975/j.issn.1002-6819.2018.16.015

    Huang J X, Huang H, Ma H Y, et al.Markov Chain Monte Carlo based WOFOST model parameters calibration and uncertainty analysis.Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 113-119. doi:  10.11975/j.issn.1002-6819.2018.16.015
    [12] 马玉平, 王石立, 王馥棠.作物模拟模型在农业气象业务应用中的研究初探.应用气象学报, 2005, 16(3): 293-303. doi:  10.3969/j.issn.1001-7313.2005.03.003

    Ma Y P, Wang S L, Wang F T.A preliminary study on the application of crop simulation models in agrometeorological services.J Appl Meteor Sci, 2005, 16(3): 293-303. doi:  10.3969/j.issn.1001-7313.2005.03.003
    [13] 刘布春, 王石立, 庄立伟, 等.基于东北玉米区域动力模型的低温冷害预报应用研究.应用气象学报, 2003, 14(5): 616-625. doi:  10.3969/j.issn.1001-7313.2003.05.012

    Liu B C, Wang S L, Zhuang L W, et al.Study of low temperature damage prediction applications in EN, China based on a scaling up maize dynamic model.J Appl Meteor Sci, 2003, 14(5): 616-625. doi:  10.3969/j.issn.1001-7313.2003.05.012
    [14] 秦鹏程, 刘敏, 万素琴, 等.不完整气象资料下基于作物模型的产量预报方法.应用气象学报, 2016, 27(4): 407-416. doi:  10.11898/1001-7313.20160403

    Qin P C, Liu M, Wan S Q, et al.Methods for yield forecast based on crop model with incomplete weather observations.J Appl Meteor Sci, 2016, 27(4): 407-416. doi:  10.11898/1001-7313.20160403
    [15] 许伟, 秦其明, 张添源, 等.SCE标定结合EnKF同化遥感和WOFOST模型模拟冬小麦时序LAI.农业工程学报, 2019, 35(14): 166-173.

    Xu W, Qin Q M, Zhang T Y, et al.Time-series LAI simulation of winter wheat based on WOFOST model calibrated by SCE and assimilated by EnKF.Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 166-173.
    [16] 张琨.遥感蒸散发模型参数敏感性分析与优化方法研究.兰州:兰州大学, 2018.

    Zhang K.Parameter Sensitivity Analysis and Optimization for Remote Sensing Based Evapotranspiration Model.Lanzhou:Lanzhou University, 2018.
    [17] 段国辉, 田文仲, 温红霞, 等.近13 a河南省高产冬小麦产量构成及亲本利用演变分析.山西农业科学, 2020, 48(2): 148-153.

    Duan G H, Tian W Z, Wen H X, et al.Analysis on yield components and parent utilization evolution of high yield winter wheat in Henan province in the past 13 years.Journal of Shanxi Agricultural Sciences, 2020, 48(2): 148-153.
    [18] Hijmans R J, Guiking-Lens I M, Van Diepen C A.WOFOST 6.0:User's Guide for the WOFOST 6.0 Crop Growth Simulation Model.Wageningen:DLO Winand Staring Centre, 1994.
    [19] 兴安, 卓志清, 赵云泽, 等.基于EFAST的不同生产水平下WOFOST模型参数敏感性分析.农业机械学报, 2020, 51(2): 161-171.

    Xing A, Zhuo Z Q, Zhao Y Z, et al.Sensitivity analysis of WOFOST model crop parameters under different production levels based on EFAST method.Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 161-171.
    [20] 张弘, 刘伟昌, 李树岩.WOFOST模型对河南省冬小麦模拟的适用性分析.气象与环境科学, 2019, 42(1): 34-40.

    Zhang H, Liu W C, Li S Y.Applicability analysis of WOFOST model for winter wheat in Henan.Meteorological and Environmental Sciences, 2019, 42(1): 34-40.
    [21] 邱美娟, 宋迎波, 王建林, 等.山东省冬小麦产量动态集成预报方法.应用气象学报, 2016, 27(2): 191-200. doi:  10.11898/1001-7313.20160207

    Qiu M J, Song Y B, Wang J L, et al.Integrated technology of yield dynamic prediction of winter wheat in Shandong province.J Appl Meteor Sci, 2016, 27(2): 191-200. doi:  10.11898/1001-7313.20160207
    [22] Allen R G, Pereira L S, Raes D, et al.Crop Evapotranspiration:FAO Irrigation and Drainage Paper No.56.FAO, Rome, Italy, 1998.
    [23] 张文君, 顾行发, 陈良富, 等.基于均值-标准差的K均值初始聚类中心选取算法.遥感学报, 2006, 10(5): 715-721.

    Zhang W J, Gu X F, Chen L F, et al.An algorithm for initilizing of K-Means clustering based on Mean-standard deviation.Journal of Remote Sensing, 2006, 10(5): 715-721.
    [24] Sobol I M.Sensitivity estimates for nonlinear mathematical models.Math Model Comput Exp, 1993, 1(4): 407-414.
    [25] Sobol I M.Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates.Mathematics and computers in simulation, 2001, 55(1-3): 271-280. doi:  10.1016/S0378-4754(00)00270-6
    [26] Tang Y, Reed P, Wagener T, et al.Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation.Hydrology and Earth System Sciences, 2007, 3(6): 793-817.
    [27] Nossent J, Elsen P, Bauwens W.Sobol'sensitivity analysis of a complex environmental model.Environmental Modelling & Software, 2011, 26: 1515-1525.
    [28] 符天凡.基于聚类的随机梯度马尔科夫链蒙特卡洛算法.上海:上海交通大学, 2018.

    Fu T F.Clustering-based Stochastic Gradient Markov Chain Monte Carlo.Shanghai:Shanghai Jiao Tong University, 2018.
    [29] Hasting W.Monte Carlo sampling methods using Markov Chains and their applications.Biometrika, 1970, 57: 97-109. doi:  10.1093/biomet/57.1.97
    [30] 孙玫.MCMC算法及其应用.应用数学进展, 2018, 7(12): 1626-1637.

    Sun M.MCMC algorithm and its application.Advances in Applied Mathematics, 2018, 7(12): 1626-1637.
    [31] Braak C J.A Markov Chain Monte Carlo version of the genetic algorithm differential evolution.Stats and Computing, 2006, 16: 239-249. doi:  10.1007/s11222-006-8769-1
    [32] 周广胜, 何奇瑾, 汲玉河.适应气候变化的国际行动和农业措施研究进展.应用气象学报, 2016, 27(5): 527-533. doi:  10.11898/1001-7313.20160502

    Zhou G S, He Q J, Ji Y H.Advances in the international action and agricultural measurements of adaptation to climate change.J Appl Meteor Sci, 2016, 27(5): 527-533. doi:  10.11898/1001-7313.20160502
    [33] 郭建平.气候变化对中国农业生产的影响研究进展.应用气象学报, 2015, 26(1): 1-11. doi:  10.11898/1001-7313.20150101

    Guo J P.Advances in impacts of climate change on agricultural production in China.J Appl Meteor Sci, 2015, 26(1): 1-11. doi:  10.11898/1001-7313.20150101
  • 加载中
图(3) / 表(9)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  48
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 修回日期:  2020-11-02
  • 刊出日期:  2021-01-31

目录

    /

    返回文章
    返回