Key Technologies of Hydrometeor Classification and Mosaic Algorithm for X-band Polarimetric Radar
-
摘要: X波段双偏振雷达具有时空分辨率高、易于布网的特点,但散射特性差异和衰减影响使现有S波段雷达的相态识别和拼图算法不适用于X波段双偏振雷达。该文针对X波段相态识别及拼图产品的关键技术开展研究,提出基于准垂直剖面的融化层识别方法、基于数据质量的置信度阈值调整方法、基于统计的隶属函数参数改进方法和基于衰减程度的拼图融合方法。通过对比改进后可有效提升水凝物相态识别结果的可靠性和多雷达拼图结果的合理性。在2016年汛期北京典型个例中,融合后的X波段雷达网与当地S波段业务雷达相比能够提供更精细的回波结构和水凝物相态分布,有效缓解S波段雷达在近处探测能力降低的问题,识别的降雹区与地面观测相符。Abstract: The advantages of X-band polarimetric weather radar focus on its high spatio-temporal resolution and capability of multi-radar networking. However, the previously designed hydrometeor classification algorithm (HCA) for S-band weather radar is unsuitable for X-band weather radar due to the difference of backscattering characteristics and heavy precipitation attenuation. Therefore, the key technologies of hydrometeor classification algorithm and multi-radar mosaic algorithm for X-band polarimetric weather radar are proposed. First, it is found that the melting layer detection algorithm designed for S-band polarimetric weather radar is not suitable for X-band weather radar through analysis on the data collected by Beijing X-band radar network. A melting layer detection method based on quasi-vertical profile is proposed, which greatly improves the accuracy of obtaining the melting information. Second, a confidence threshold adjustment method is proposed to accurately estimate the data quality in the case of precipitation and clutter superposition. Third, an optimization method of membership functions based on data statistics is proposed to reconstruct the classification parameters suitable for Beijing X-band radar network. Finally, a multi-radar mosaic method based on rainfall attenuation is proposed, in which the reflectivity factors of networking radars are weighted and averaged by the data quality factor. Compared with the traditional method, it is found that the structural inhomogeneity of X-band radar mosaic result is effectively reduced. Those modifications effectively enhance the reliability of classification mosaic results of X-band weather radar network and provide technical support for the rapid deployment of X-band radar in China. Three typical precipitation cases in Beijing during the flood season in 2016 are used to compare the observational efficiency between X-band weather radar network and S-band operational radar. For the cases of convective rainfall, fine echo structures and reasonable hydrometeor distributions are found in X-band radar mosaic results. Especially for convective rainfall with short duration and small spatial scale, the advantage of X-band radar is more obvious, which alleviates the limited detection ability of S-band operational radar in urban areas. In addition, the hail falling area identified by X-band radar can be verified by manual observation in national weather stations. The performance of X-band weather radar network in large-scale stratiform precipitation, however, is not as good as S-band weather radar.
-
图 2 BJXSY雷达分别使用MLDA算法和QVP算法得到的融化层识别结果
(a)2016年7月20日07:32 MLDA算法识别的融化物空间分布(散点),(黑色实线表示算法识别的融化层顶和底层随方位的变化,黑色虚线表示探空的融化层顶高度)
(b)2016年7月20日01:00—17:00 BJXSY雷达使用QVP算法得到的融化层识别结果Fig. 2 Melting Layers identified by MLDA and QVP for BJXSY radar
(a)distribution of melting particles identified by the MLDA at 0732 BT 20 Jul 2016(the scattered)
(black solid lines represent the top and bottom of melting layers varying with azimuth, and black dotted line represents the height of melting layer obtained by upair sounding),(b)melting layers identified by QVP from 0100 BT to 1700 BT on 20 Jul 2016图 4 BJXSY雷达2016年汛期观测数据统计得到的与不同降水相态对应的ZH-ZDR, ZH-ρhv, ZH-KDP(l)频次图
(黑框和红框分别表示默认和改进后的隶属函数参数, 实线和虚线分布表示值为1和0的隶属函数区间分界线)
Fig. 4 The frequency diagrams of ZH-ZDR, ZH-ρhv and ZH-KDP(l) of different hydrometeors from BJXSY radar in flood season of 2016
(the black and red boxes represent the default and modified membership functions respectively, and the solid line and dotted lines represent the boundary of membership function with values of 1 and 0)
表 1 BJ-Xnet改进前后隶属函数的参数对比
Table 1 Parameters of membership functions of BJ-Xnet before and after modification
相态 隶属函数 单位 默认隶属函数参数 改进后隶属函数参数 x1 x2 x3 x4 x1 x2 x3 x4 干雪 P[ZDR] dB -0.3 0 0.3 0.6 -0.3 -0.1 0.4 0.6 干雪 P[ρhv] 0.95 0.98 1 1.01 0.95 0.97 1 1.01 冰晶 P[ρhv] 0.95 0.98 1 1.01 0.95 0.97 1 1.01 冰晶 P[KDP(l)] dB·km-1 -5 0 10 15 -30 -25 10 20 湿雪 P[ZH] dBZ 25 30 40 50 20 23 37 45 湿雪 P[ZDR] dB 0.5 1 2 3 0 0.5 2 2.5 湿雪 P[ρhv] 0.88 0.92 0.95 0.985 0.86 0.88 0.96 0.985 霰 P[ZDR] dB -0.3 0.0 f1 f1+0.3 -1.5 -0.8 0.0 0.5 雨夹雹 P[ZDR] dB -0.3 0.0 f1 f1+0.5 -1.5 -1.0 f1+0.3 f1+0.8 雨夹雹 P[ρhv] dB 0.85 0.90 1.00 1.01 0.80 0.90 1.00 1.01 雨夹雹 P[KDP(l)] dB·km-1 -10 -4 g1 g1+1 -10 -4 5 7 晴空回波 P[ZDR] dB 0 2 10 12 -5 -2 2 7 晴空回波 P[ρhv] 0.3 0.5 0.8 0.83 0.2 0.3 0.75 0.83 晴空回波 P[σ(ZH)] (°) 1 2 4 7 1 1.5 5 8 晴空回波 P[σ(ΦDP)] (°) 8 10 40 60 8 15 120 150 -
[1] Seliga T A,Bringi V N.Potential use of differential reflectivity measurements at orthogonal polarizations for measuring precipitation.J Appl Meteor,1976,15:69-76. doi: 10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2 [2] Ryzhkov A V, Schuur T J, Burgess D W, et al. The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull Amer Meteor Soc, 2005, 86(6): 809-824. doi: 10.1175/BAMS-86-6-809 [3] 刘黎平, 葛润生. 中国气象科学研究院雷达气象研究50年. 应用气象学报, 2006, 17(6): 682-689. http://qikan.camscma.cn/article/id/200606117Liu L P, Ge R S. An overview on radar meteorology research in Chinese Academy of Meteorological Sciences for a half century. J Appl Meteor Sci, 2006, 17(6): 682-689. http://qikan.camscma.cn/article/id/200606117 [4] Zhao K, and Coauthors. Recent progress in dual-polarization radar research and applications in China. Adv Atmos Sci, 2019, 36(9): 961-974. doi: 10.1007/s00376-019-9057-2 [5] 王洪, 孔凡铀, Jung Youngsun, 等. 面向资料同化的S波段双偏振雷达质量控制. 应用气象学报, 2018, 29(5): 546-558. doi: 10.11898/1001-7313.20180504Wang H, Kong F Y, Jung Y, et al. Quality control of S-band polarimetric radar measurements for data assimilation. J Appl Meteor Sci, 2018, 29(5): 546-558. doi: 10.11898/1001-7313.20180504 [6] 曹杨, 陈洪滨, 苏德斌. C波段双线偏振天气雷达零度层亮带识别和订正. 应用气象学报, 2018, 29(1): 84-96. doi: 10.11898/1001-7313.20180108Cao Y, Chen H B, Su D B. Identification and correction of the bright band using a C-band dual polarization weather radar. J Appl Meteor Sci, 2018, 29(1): 84-96. doi: 10.11898/1001-7313.20180108 [7] 蒋银丰, 寇蕾蕾, 陈爱军, 等. 双偏振雷达和双频测雨雷达反射率因子对比. 应用气象学报, 2020, 31(5): 608-619. doi: 10.11898/1001-7313.20200508Jiang Y F, Kou L L, Chen A J, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. doi: 10.11898/1001-7313.20200508 [8] Bringi V N, Chandrasekar V, 李忱, 等. 偏振多普勒天气雷达原理和应用. 北京: 气象出版社, 2010.Bringi V N, Chandrasekar V, Li C, et al. Principle and Application of Polarization Doppler Weather Radar. Beijing: China Meteorological Press, 2010. [9] Park H, Ryzhkov A V, Zrnic, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24: 730-748. doi: 10.1175/2008WAF2222205.1 [10] Elmore K L. The NSSL hydrometeor classification algorithm in winter surface precipitation: Evaluation and future development. Wea Forecasting, 2011, 26: 756-765. doi: 10.1175/WAF-D-10-05011.1 [11] Snyder J C, Ryzhkov A V. Automated detection of polarimetric tornadic debris signatures using a hydrometeor classification algorithm. J Appl Meteor Climatol, 2015, 54: 1861-1870. doi: 10.1175/JAMC-D-15-0138.1 [12] Wang Y, Zhang J, Ryzhkov A V, et al. C-band polarimetric radar QPEs based on specific differential propagation phase for extreme typhoon rainfall. J Atmos Oceanic Technol, 2013, 30: 1354-1370. doi: 10.1175/JTECH-D-12-00083.1 [13] Wang Y, Cocks S, Tang L, et al. A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part I: Algorithm description. J Hydrometeorol, 2019, 20: 985-997. doi: 10.1175/JHM-D-18-0071.1 [14] 刘晓阳, 李郝, 何平, 等. GPM/DPR雷达与CINRAD雷达降水探测对比. 应用气象学报, 2018, 29(6): 667-679. doi: 10.11898/1001-7313.20180603Liu X Y, Li H, He P, et al. Comparison on the precipitation measurement between GPM/DPR and CINRAD radars. J Appl Meteor Sci, 2018, 29(6): 667-679. doi: 10.11898/1001-7313.20180603 [15] 阮征, 李淘, 金龙, 等. 大气垂直运动对雷达估测降水的影响. 应用气象学报, 2017, 28(2): 200-208. doi: 10.11898/1001-7313.20170207Ruan Z, Li T, Jin L, et al. Influence of vertical air motion on the radar quantitative precipitation estimation. J Appl Meteor Sci, 2017, 28(2): 200-208. doi: 10.11898/1001-7313.20170207 [16] 程周杰, 刘宪勋, 朱亚平. 双偏振雷达对一次水凝物相态演变过程的分析. 应用气象学报, 2009, 20(5): 594-601. http://qikan.camscma.cn/article/id/20090511Cheng Z J, Liu X X, Zhu Y P. A process of hydrometeor phase change with dual-polarimetric radar. J Appl Meteor Sci, 2009, 20(5): 594-601. http://qikan.camscma.cn/article/id/20090511 [17] 刘亚男, 肖辉, 姚振东, 等. X波段双极化雷达对云中水凝物粒子的相态识别. 气候与环境研究, 2012, 17(6): 925-936. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206031.htmLiu Y N, Xiao H, Yao Z D, et al. Analyses of hydrometeor identification based on X-band polarimetric radar. Climatic and Environmental Research, 2012, 17(6): 925-936. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206031.htm [18] 冯亮, 肖辉, 孙跃. X波段双偏振雷达水凝物粒子相态识别应用研究. 气候与环境研究, 2018, 23(3): 366-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201803011.htmFeng L, Xiao H, Sun Y. A study on hydrometeor classification and application based on X-band dual-polarization radar measurements. Climatic and Environmental Research, 2018, 23(3): 366-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201803011.htm [19] 杜牧云, 刘黎平, 胡志群, 等. 双线偏振雷达差分传播相移的质量控制. 应用气象学报, 2012, 23(6): 710-720. http://qikan.camscma.cn/article/id/20120608Du M Y, Liu L P, Hu Z Q, et al. Quality control of differential propagation phase shift for dual linear polarization radar. J Appl Meteor Sci, 2012, 23(6): 710-720. http://qikan.camscma.cn/article/id/20120608 [20] 马舒庆, 陈洪滨, 王国荣, 等. 阵列天气雷达设计与初步实现. 应用气象学报, 2019, 30(1): 1-12. doi: 10.11898/1001-7313.20190101Ma S Q, Chen H B, Wang G R, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. doi: 10.11898/1001-7313.20190101 [21] Junyent F, Chandrasekar V. Theory and characterization of weather radar networks. J Atmos Oceanic Technol, 2009, 26(3): 474-491. http://adsabs.harvard.edu/abs/2009JAtOT..26..474J [22] 徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别算法的参数改进. 应用气象学报, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309 [23] 王红艳, 刘黎平, 肖艳娇, 等. 新一代天气雷达三维数字组网软件系统设计与实现. 气象, 2009, 35(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200906003.htmWang H Y, Liu L P, Xiao Y J, et al. Design and implementation of the CINRAD 3D Digital Mosaic System. Meteor Mon, 2009, 35(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200906003.htm [24] 吴翀, 刘黎平, 吴海涛. 多部X波段天气雷达测量偏差分布及组网拼图结果分析. 高原气象, 2016, 35(3): 823-833. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201603024.htmWu C, Liu L P, Wu H T. Measurement bias and mosaics analysis for X band Doppler radars. Plateau Meteorology, 2016, 35(3): 823-833. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201603024.htm [25] Giangrande S E, Krause J M, Ryzhkov A V. Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J Appl Meteor Climatol, 2008, 47: 1354-1364. http://adsabs.harvard.edu/abs/2008JApMC..47.1354G [26] Ryzhkov A V. The impact of beam broadening on the quality of radar polarimetric Data. J Atmos Oceanic Technol, 2007, 24: 729-744. http://adsabs.harvard.edu/abs/2007JAtOT..24..729R [27] 王超, 吴翀, 刘黎平. X波段双线偏振雷达数据质量分析及控制方法. 高原气象, 2018, 38(3): 636-649. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201903018.htmWang C, Wu C, Liu L P. Data quality analysis and control method of X-band dual polarization radar. Plateau Meteorology, 2019, 38(3): 636-649. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201903018.htm [28] Wang C, Wu C, Liu L, et al. Integrated correction algorithm for X band dual-polarization radar reflectivity based on CINRAD/SA radar. Atmosphere, 2020, 11(1): 119. http://www.researchgate.net/publication/338722402_Integrated_Correction_Algorithm_for_X_Band_Dual-Polarization_Radar_Reflectivity_Based_on_CINRADSA_Radar [29] Wu C, Liu L P, Wei M, el al. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv Atmos Sci, 2018, 35(3): 296-316. [30] Ryzhkov A V, Zhang P, Reeves H D, et al. Quasivertical profiles-A new way to look at polarimetric radar data. J Atmos Oceanic Technol, 2016, 33: 551-562. http://adsabs.harvard.edu/abs/2016JAtOT..33..551R [31] Dolan B, Rutledge S A. A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J Atmos Oceanic Technol, 2009, 26: 2071-2088. [32] 石宝灵, 王红艳, 刘黎平. 云南多普勒天气雷达网探测冰雹的覆盖能力. 应用气象学报, 2018, 29(3): 270-281. doi: 10.11898/1001-7313.20180302Shi B L, Wang H Y, Liu L P. Coverage capacity of hail detection for Yunnan Doppler weather radar network. J Appl Meteor Sci, 2018, 29(3): 270-281. doi: 10.11898/1001-7313.20180302 [33] 滕玉鹏, 陈洪滨, 马舒庆, 等. 北京S波段天气雷达夜间晴空回波产生原因. 应用气象学报, 2020, 31(5): 595-607. doi: 10.11898/1001-7313.20200507Teng Y P, Chen H B, Ma S Q, et al. The cause of night clear air echo of S-band weather radar in Beijing. J Appl Meteor Sci, 2020, 31(5): 595-607. doi: 10.11898/1001-7313.20200507 [34] 孙继松, 雷蕾, 于波, 等. 近10年北京地区极端暴雨事件的基本特征. 气象学报, 2015, 73(4): 609-623. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504001.htmSun J S, Lei L, Yu B, et al. The fundamental features of the extreme severe rain events in the recent 10 years in the Beijing area. Acta Meteor Sinica, 2015, 73(4): 609-623. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504001.htm -