留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段双偏振雷达相态识别与拼图的关键技术

吴翀 刘黎平 仰美霖 马建立 李娟

吴翀, 刘黎平, 仰美霖, 等. X波段双偏振雷达相态识别与拼图的关键技术. 应用气象学报, 2021, 32(2): 200-216. DOI:  10.11898/1001-7313.20210206..
引用本文: 吴翀, 刘黎平, 仰美霖, 等. X波段双偏振雷达相态识别与拼图的关键技术. 应用气象学报, 2021, 32(2): 200-216. DOI:  10.11898/1001-7313.20210206.
Wu Chong, Liu Liping, Yang Meilin, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. DOI:  10.11898/1001-7313.20210206.
Citation: Wu Chong, Liu Liping, Yang Meilin, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. DOI:  10.11898/1001-7313.20210206.

X波段双偏振雷达相态识别与拼图的关键技术

DOI: 10.11898/1001-7313.20210206
资助项目: 

国家重点研发计划 2018YFC1506101

国家重点研发计划 2018YFF0300102

国家自然科学基金项目 41675023

国家自然科学基金项目 41575050

北京市科技计划课题 Z171100004417008

详细信息
    通信作者:

    吴翀, wuchong@cma.gov.cn

Key Technologies of Hydrometeor Classification and Mosaic Algorithm for X-band Polarimetric Radar

  • 摘要: X波段双偏振雷达具有时空分辨率高、易于布网的特点,但散射特性差异和衰减影响使现有S波段雷达的相态识别和拼图算法不适用于X波段双偏振雷达。该文针对X波段相态识别及拼图产品的关键技术开展研究,提出基于准垂直剖面的融化层识别方法、基于数据质量的置信度阈值调整方法、基于统计的隶属函数参数改进方法和基于衰减程度的拼图融合方法。通过对比改进后可有效提升水凝物相态识别结果的可靠性和多雷达拼图结果的合理性。在2016年汛期北京典型个例中,融合后的X波段雷达网与当地S波段业务雷达相比能够提供更精细的回波结构和水凝物相态分布,有效缓解S波段雷达在近处探测能力降低的问题,识别的降雹区与地面观测相符。
  • 图  1  BJ-Xnet与BJSDX分布及波束最低覆盖高度对比

    (黑色虚线框表示北京市主城区)

    Fig. 1  Site distribution and the minimum height of radar coverage of BJ-Xnet and BJSDX

    (the black dotted line indicates the scope of Beijing downtown)

    图  2  BJXSY雷达分别使用MLDA算法和QVP算法得到的融化层识别结果

    (a)2016年7月20日07:32 MLDA算法识别的融化物空间分布(散点),(黑色实线表示算法识别的融化层顶和底层随方位的变化,黑色虚线表示探空的融化层顶高度)
    (b)2016年7月20日01:00—17:00 BJXSY雷达使用QVP算法得到的融化层识别结果

    Fig. 2  Melting Layers identified by MLDA and QVP for BJXSY radar

    (a)distribution of melting particles identified by the MLDA at 0732 BT 20 Jul 2016(the scattered)
    (black solid lines represent the top and bottom of melting layers varying with azimuth, and black dotted line represents the height of melting layer obtained by upair sounding),(b)melting layers identified by QVP from 0100 BT to 1700 BT on 20 Jul 2016

    图  3  BJXSY雷达置信度和灵敏度廓线

    (a)Fatt, (b)灵敏度, (c)Fsnr, (d)Frhv

    Fig. 3  The profiles of Gauss functions and the minimum reflectivity of BJXSY radar

    (a)Fatt, (b)minimum reflectivity, (c)Fsnr, (d)Frhv

    图  4  BJXSY雷达2016年汛期观测数据统计得到的与不同降水相态对应的ZH-ZDR, ZH-ρhv, ZH-KDP(l)频次图

    (黑框和红框分别表示默认和改进后的隶属函数参数, 实线和虚线分布表示值为1和0的隶属函数区间分界线)

    Fig. 4  The frequency diagrams of ZH-ZDR, ZH-ρhv and ZH-KDP(l) of different hydrometeors from BJXSY radar in flood season of 2016

    (the black and red boxes represent the default and modified membership functions respectively, and the solid line and dotted lines represent the boundary of membership function with values of 1 and 0)

    图  5  2016年7月31日06:20 BJ-Xnet在2.5 km高度拼图试验的CAPPI

    Fig. 5  The CAPPI of mosaic test at 2.5 km height observed by BJ-Xnet at 0620 BT 31 Jul 2016

    图  6  2016年7月31日06:20 BJ-Xnet在2.5 km高度分别使用DW方法, PW方法和QW方法得到的ZH拼图结果

    Fig. 6  Mosaic results of ZH by DW method, PW method and QW method for BJ-Xnet at 2.5 km height at 0620 BT 31 Jul 2016

    图  7  2016年7月27日BJSDX与BJ-Xnet 2.5 km高度CAPPI对比

    (黑色虚线框表示北京市主城区, 黑色实线表示垂直剖面的选取位置)

    Fig. 7  The comparison of CAPPI between BJSDX and BJ-Xnet at 2.5 km height on 27 Jul 2016

    (the black dotted line indicates the scope of Beijing downtown, the black solid line indicates position of vertical sections)

    图  8  图 7相同, 但为BJSDX与BJ-Xnet的在相同时刻下的垂直结构对比

    (剖面的选取位置在水平结构中以黑实线标出)

    Fig. 8  The same as in Fig. 7, but for comparison of vertical structures between BJSDX and BJ-Xnet

    (positions of vertical section are marked by black solid lines in the CAPPIs)

    图  9  图 7, 但为2016年7月30日BJSDX与BJ-Xnet的观测对比

    Fig. 9  The same as in Fig. 7, but for comparison between BJSDX and BJ-Xnet on 30 Jul 2016

    图  10  图 8, 但为2016年7月30日BJSDX与BJ-Xnet的观测对比

    Fig. 10  The same as Fig. 8, but for comparison between BJSDX and BJ-Xnet on 30 Jul 2016

    图  11  图 7, 但为2016年7月20日BJSDX与BJ-Xnet的观测对比

    Fig. 11  The same as Fig. 7, but for comparison between BJSDX and BJ-Xnet on 20 Jul 2016

    表  1  BJ-Xnet改进前后隶属函数的参数对比

    Table  1  Parameters of membership functions of BJ-Xnet before and after modification

    相态 隶属函数 单位 默认隶属函数参数 改进后隶属函数参数
    x1 x2 x3 x4 x1 x2 x3 x4
    干雪 P[ZDR] dB -0.3 0 0.3 0.6 -0.3 -0.1 0.4 0.6
    干雪 P[ρhv] 0.95 0.98 1 1.01 0.95 0.97 1 1.01
    冰晶 P[ρhv] 0.95 0.98 1 1.01 0.95 0.97 1 1.01
    冰晶 P[KDP(l)] dB·km-1 -5 0 10 15 -30 -25 10 20
    湿雪 P[ZH] dBZ 25 30 40 50 20 23 37 45
    湿雪 P[ZDR] dB 0.5 1 2 3 0 0.5 2 2.5
    湿雪 P[ρhv] 0.88 0.92 0.95 0.985 0.86 0.88 0.96 0.985
    P[ZDR] dB -0.3 0.0 f1 f1+0.3 -1.5 -0.8 0.0 0.5
    雨夹雹 P[ZDR] dB -0.3 0.0 f1 f1+0.5 -1.5 -1.0 f1+0.3 f1+0.8
    雨夹雹 P[ρhv] dB 0.85 0.90 1.00 1.01 0.80 0.90 1.00 1.01
    雨夹雹 P[KDP(l)] dB·km-1 -10 -4 g1 g1+1 -10 -4 5 7
    晴空回波 P[ZDR] dB 0 2 10 12 -5 -2 2 7
    晴空回波 P[ρhv] 0.3 0.5 0.8 0.83 0.2 0.3 0.75 0.83
    晴空回波 P[σ(ZH)] (°) 1 2 4 7 1 1.5 5 8
    晴空回波 P[σ(ΦDP)] (°) 8 10 40 60 8 15 120 150
    下载: 导出CSV
  • [1] Seliga T A,Bringi V N.Potential use of differential reflectivity measurements at orthogonal polarizations for measuring precipitation.J Appl Meteor,1976,15:69-76. doi:  10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
    [2] Ryzhkov A V, Schuur T J, Burgess D W, et al. The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull Amer Meteor Soc, 2005, 86(6): 809-824. doi:  10.1175/BAMS-86-6-809
    [3] 刘黎平, 葛润生. 中国气象科学研究院雷达气象研究50年. 应用气象学报, 2006, 17(6): 682-689. http://qikan.camscma.cn/article/id/200606117

    Liu L P, Ge R S. An overview on radar meteorology research in Chinese Academy of Meteorological Sciences for a half century. J Appl Meteor Sci, 2006, 17(6): 682-689. http://qikan.camscma.cn/article/id/200606117
    [4] Zhao K, and Coauthors. Recent progress in dual-polarization radar research and applications in China. Adv Atmos Sci, 2019, 36(9): 961-974. doi:  10.1007/s00376-019-9057-2
    [5] 王洪, 孔凡铀, Jung Youngsun, 等. 面向资料同化的S波段双偏振雷达质量控制. 应用气象学报, 2018, 29(5): 546-558. doi:  10.11898/1001-7313.20180504

    Wang H, Kong F Y, Jung Y, et al. Quality control of S-band polarimetric radar measurements for data assimilation. J Appl Meteor Sci, 2018, 29(5): 546-558. doi:  10.11898/1001-7313.20180504
    [6] 曹杨, 陈洪滨, 苏德斌. C波段双线偏振天气雷达零度层亮带识别和订正. 应用气象学报, 2018, 29(1): 84-96. doi:  10.11898/1001-7313.20180108

    Cao Y, Chen H B, Su D B. Identification and correction of the bright band using a C-band dual polarization weather radar. J Appl Meteor Sci, 2018, 29(1): 84-96. doi:  10.11898/1001-7313.20180108
    [7] 蒋银丰, 寇蕾蕾, 陈爱军, 等. 双偏振雷达和双频测雨雷达反射率因子对比. 应用气象学报, 2020, 31(5): 608-619. doi:  10.11898/1001-7313.20200508

    Jiang Y F, Kou L L, Chen A J, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. doi:  10.11898/1001-7313.20200508
    [8] Bringi V N, Chandrasekar V, 李忱, 等. 偏振多普勒天气雷达原理和应用. 北京: 气象出版社, 2010.

    Bringi V N, Chandrasekar V, Li C, et al. Principle and Application of Polarization Doppler Weather Radar. Beijing: China Meteorological Press, 2010.
    [9] Park H, Ryzhkov A V, Zrnic, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24: 730-748. doi:  10.1175/2008WAF2222205.1
    [10] Elmore K L. The NSSL hydrometeor classification algorithm in winter surface precipitation: Evaluation and future development. Wea Forecasting, 2011, 26: 756-765. doi:  10.1175/WAF-D-10-05011.1
    [11] Snyder J C, Ryzhkov A V. Automated detection of polarimetric tornadic debris signatures using a hydrometeor classification algorithm. J Appl Meteor Climatol, 2015, 54: 1861-1870. doi:  10.1175/JAMC-D-15-0138.1
    [12] Wang Y, Zhang J, Ryzhkov A V, et al. C-band polarimetric radar QPEs based on specific differential propagation phase for extreme typhoon rainfall. J Atmos Oceanic Technol, 2013, 30: 1354-1370. doi:  10.1175/JTECH-D-12-00083.1
    [13] Wang Y, Cocks S, Tang L, et al. A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part I: Algorithm description. J Hydrometeorol, 2019, 20: 985-997. doi:  10.1175/JHM-D-18-0071.1
    [14] 刘晓阳, 李郝, 何平, 等. GPM/DPR雷达与CINRAD雷达降水探测对比. 应用气象学报, 2018, 29(6): 667-679. doi:  10.11898/1001-7313.20180603

    Liu X Y, Li H, He P, et al. Comparison on the precipitation measurement between GPM/DPR and CINRAD radars. J Appl Meteor Sci, 2018, 29(6): 667-679. doi:  10.11898/1001-7313.20180603
    [15] 阮征, 李淘, 金龙, 等. 大气垂直运动对雷达估测降水的影响. 应用气象学报, 2017, 28(2): 200-208. doi:  10.11898/1001-7313.20170207

    Ruan Z, Li T, Jin L, et al. Influence of vertical air motion on the radar quantitative precipitation estimation. J Appl Meteor Sci, 2017, 28(2): 200-208. doi:  10.11898/1001-7313.20170207
    [16] 程周杰, 刘宪勋, 朱亚平. 双偏振雷达对一次水凝物相态演变过程的分析. 应用气象学报, 2009, 20(5): 594-601. http://qikan.camscma.cn/article/id/20090511

    Cheng Z J, Liu X X, Zhu Y P. A process of hydrometeor phase change with dual-polarimetric radar. J Appl Meteor Sci, 2009, 20(5): 594-601. http://qikan.camscma.cn/article/id/20090511
    [17] 刘亚男, 肖辉, 姚振东, 等. X波段双极化雷达对云中水凝物粒子的相态识别. 气候与环境研究, 2012, 17(6): 925-936. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206031.htm

    Liu Y N, Xiao H, Yao Z D, et al. Analyses of hydrometeor identification based on X-band polarimetric radar. Climatic and Environmental Research, 2012, 17(6): 925-936. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206031.htm
    [18] 冯亮, 肖辉, 孙跃. X波段双偏振雷达水凝物粒子相态识别应用研究. 气候与环境研究, 2018, 23(3): 366-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201803011.htm

    Feng L, Xiao H, Sun Y. A study on hydrometeor classification and application based on X-band dual-polarization radar measurements. Climatic and Environmental Research, 2018, 23(3): 366-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201803011.htm
    [19] 杜牧云, 刘黎平, 胡志群, 等. 双线偏振雷达差分传播相移的质量控制. 应用气象学报, 2012, 23(6): 710-720. http://qikan.camscma.cn/article/id/20120608

    Du M Y, Liu L P, Hu Z Q, et al. Quality control of differential propagation phase shift for dual linear polarization radar. J Appl Meteor Sci, 2012, 23(6): 710-720. http://qikan.camscma.cn/article/id/20120608
    [20] 马舒庆, 陈洪滨, 王国荣, 等. 阵列天气雷达设计与初步实现. 应用气象学报, 2019, 30(1): 1-12. doi:  10.11898/1001-7313.20190101

    Ma S Q, Chen H B, Wang G R, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. doi:  10.11898/1001-7313.20190101
    [21] Junyent F, Chandrasekar V. Theory and characterization of weather radar networks. J Atmos Oceanic Technol, 2009, 26(3): 474-491. http://adsabs.harvard.edu/abs/2009JAtOT..26..474J
    [22] 徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别算法的参数改进. 应用气象学报, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309

    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [23] 王红艳, 刘黎平, 肖艳娇, 等. 新一代天气雷达三维数字组网软件系统设计与实现. 气象, 2009, 35(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200906003.htm

    Wang H Y, Liu L P, Xiao Y J, et al. Design and implementation of the CINRAD 3D Digital Mosaic System. Meteor Mon, 2009, 35(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200906003.htm
    [24] 吴翀, 刘黎平, 吴海涛. 多部X波段天气雷达测量偏差分布及组网拼图结果分析. 高原气象, 2016, 35(3): 823-833. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201603024.htm

    Wu C, Liu L P, Wu H T. Measurement bias and mosaics analysis for X band Doppler radars. Plateau Meteorology, 2016, 35(3): 823-833. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201603024.htm
    [25] Giangrande S E, Krause J M, Ryzhkov A V. Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J Appl Meteor Climatol, 2008, 47: 1354-1364. http://adsabs.harvard.edu/abs/2008JApMC..47.1354G
    [26] Ryzhkov A V. The impact of beam broadening on the quality of radar polarimetric Data. J Atmos Oceanic Technol, 2007, 24: 729-744. http://adsabs.harvard.edu/abs/2007JAtOT..24..729R
    [27] 王超, 吴翀, 刘黎平. X波段双线偏振雷达数据质量分析及控制方法. 高原气象, 2018, 38(3): 636-649. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201903018.htm

    Wang C, Wu C, Liu L P. Data quality analysis and control method of X-band dual polarization radar. Plateau Meteorology, 2019, 38(3): 636-649. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201903018.htm
    [28] Wang C, Wu C, Liu L, et al. Integrated correction algorithm for X band dual-polarization radar reflectivity based on CINRAD/SA radar. Atmosphere, 2020, 11(1): 119. http://www.researchgate.net/publication/338722402_Integrated_Correction_Algorithm_for_X_Band_Dual-Polarization_Radar_Reflectivity_Based_on_CINRADSA_Radar
    [29] Wu C, Liu L P, Wei M, el al. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv Atmos Sci, 2018, 35(3): 296-316.
    [30] Ryzhkov A V, Zhang P, Reeves H D, et al. Quasivertical profiles-A new way to look at polarimetric radar data. J Atmos Oceanic Technol, 2016, 33: 551-562. http://adsabs.harvard.edu/abs/2016JAtOT..33..551R
    [31] Dolan B, Rutledge S A. A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J Atmos Oceanic Technol, 2009, 26: 2071-2088.
    [32] 石宝灵, 王红艳, 刘黎平. 云南多普勒天气雷达网探测冰雹的覆盖能力. 应用气象学报, 2018, 29(3): 270-281. doi:  10.11898/1001-7313.20180302

    Shi B L, Wang H Y, Liu L P. Coverage capacity of hail detection for Yunnan Doppler weather radar network. J Appl Meteor Sci, 2018, 29(3): 270-281. doi:  10.11898/1001-7313.20180302
    [33] 滕玉鹏, 陈洪滨, 马舒庆, 等. 北京S波段天气雷达夜间晴空回波产生原因. 应用气象学报, 2020, 31(5): 595-607. doi:  10.11898/1001-7313.20200507

    Teng Y P, Chen H B, Ma S Q, et al. The cause of night clear air echo of S-band weather radar in Beijing. J Appl Meteor Sci, 2020, 31(5): 595-607. doi:  10.11898/1001-7313.20200507
    [34] 孙继松, 雷蕾, 于波, 等. 近10年北京地区极端暴雨事件的基本特征. 气象学报, 2015, 73(4): 609-623. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504001.htm

    Sun J S, Lei L, Yu B, et al. The fundamental features of the extreme severe rain events in the recent 10 years in the Beijing area. Acta Meteor Sinica, 2015, 73(4): 609-623. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504001.htm
  • 加载中
图(11) / 表(1)
计量
  • 摘要浏览量:  2408
  • HTML全文浏览量:  991
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 修回日期:  2020-10-19
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回