留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温室气体对亚洲夏季风影响的数值研究

彭艳玉 刘煜 缪育聪

彭艳玉, 刘煜, 缪育聪. 温室气体对亚洲夏季风影响的数值研究. 应用气象学报, 2021, 32(2): 245-256. DOI:  10.11898/1001-7313.20210209..
引用本文: 彭艳玉, 刘煜, 缪育聪. 温室气体对亚洲夏季风影响的数值研究. 应用气象学报, 2021, 32(2): 245-256. DOI:  10.11898/1001-7313.20210209.
Peng Yanyu, Liu Yu, Miao Yucong. A numerical study on impacts of greenhouse gases on Asian summer monsoon. J Appl Meteor Sci, 2021, 32(2): 245-256. DOI:  10.11898/1001-7313.20210209.
Citation: Peng Yanyu, Liu Yu, Miao Yucong. A numerical study on impacts of greenhouse gases on Asian summer monsoon. J Appl Meteor Sci, 2021, 32(2): 245-256. DOI:  10.11898/1001-7313.20210209.

温室气体对亚洲夏季风影响的数值研究

DOI: 10.11898/1001-7313.20210209
资助项目: 

国家重点研发计划 2017YFA0603501

国家自然科学基金项目 41805126

详细信息
    通信作者:

    刘煜, yuliu@cma.gov.cn

A Numerical Study on Impacts of Greenhouse Gases on Asian Summer Monsoon

  • 摘要: 利用NCEP/NCAR再分析资料检验全球气候模式CAM5.1模拟亚洲夏季风的能力,CAM5.1模式能够较好再现亚洲夏季风的基本特征。通过工业革命前(1850年)、工业革命后(2000年)温室气体排放情景的敏感性试验探讨近现代温室气体增加对亚洲夏季风的影响机制。结果显示:温室气体增加导致亚洲大部分区域地面气温增加,印度半岛中部、中南半岛和中国东部地区夏季风增强,印度半岛中部及北部、中南半岛中北部和中国东部地区夏季降水增加。分析大气能量收支和转换发现,温室气体增加通过增强大气对流凝结潜热释放的方式加强大气热源;夏季陆地为暖区,不均匀加热引起全位能增加,从而增强全位能向辐散风动能的转换和辐散风动能向无辐散风动能的转换,最终导致这些区域夏季风增强。其中,对流凝结潜热增加是温室气体增加造成大气稳定度降低、对流活动加强、对流云厚度加大、对流降水增加的结果;同时,对流降水增加是总降水增加的主要原因。
  • 图  1  试验TB与试验TC夏季不同要素差值

    (打点区域表示达到0.005显著性水平)
    (a)地面大气温度场,(b)850 hPa风场,(c)850 hPa无辐散风风场,(d)降水

    Fig. 1  Difference in different elements between experiment TB and experiment TC in summer

    (the dots denote passing the test of 0.005 level)
    (a)surface air temperature, (b)wind field at 850 hPa, (c)rotational wind at 850 hPa,(d)precipitation

    图  2  试验TB与试验TC夏季大气热源差值

    (打点区域表示达到0.005显著性水平)

    Fig. 2  Difference in atmospheric heat source between experiment TB and experiment TC in summer

    (the dots denote passing the test of 0.005 level)

    图  3  试验TB与试验TC夏季4种热源差值

    (打点区域表示达到0.005显著性水平)
    (a)长波辐射加热率,(b)短波辐射加热率,(c)凝结潜热加热率,(d)地表感热通量输送

    Fig. 3  Difference in 4 heat sources between experiment TB and experiment TC in summer

    (the dots denote passing the test of 0.005 level)
    (a)long-wave heating rate, (b)short-wave heating rate, (c)condensational latent heating rate,(d)surface sensible heating rate

    图  4  试验TB与试验TC夏季凝结潜热加热率差值

    (打点区域表示达到0.005显著性水平)
    (a)对流过程,(b)大尺度过程

    Fig. 4  Difference in condensation latent heating rate between experiment TB and experiment TC in summer

    (the dots denote passing the test of 0.005 level) (a)convective process, (b)large-scale process

    图  5  试验TB与试验TC夏季对流云厚度差值

    Fig. 5  Difference in convective cloud depth between experiment TB and experiment TC in summer

    图  6  试验TB与试验TC夏季115°E垂直剖面上不同要素差值

    (a)温度,(b)大气加热率

    Fig. 6  Difference in different elements on vertical cross section of 115°E between experiment TB and experiment TC in summer

    (a)temperature,(b)atmospheric heating rate

    图  7  夏季850 hPa全位能向辐散风动能转换项

    (打点区域表示达到0.005显著性水平)
    (a)试验TB,(b)试验TB与试验TC的差值

    Fig. 7  The conversion term of total potential energy to divergent wind at 850 hPa in summer

    (the dots denote passing the test of 0.005 level)
    (a)experiment TB,(b)difference between experiment TB and experiment TC

    图  8  夏季850 hPa辐散风动能向无辐散风动能转换项

    (打点区域表示达到0.005显著性水平)
    (a)试验TB,(b)试验TB与试验TC的差值

    Fig. 8  The conversion term of divergent wind to rotational wind at 850 hPa in summer

    (the dots denote passing the test of 0.005 level)
    (a)experiment TB,(b)difference between experiment TB and experiment TC

    表  1  数值试验设计

    Table  1  Numerical experiment designs

    试验 温室气体排放情景 气溶胶排放情景
    TA 2000年 2000年
    TB 2000年 1850年
    TC 1850年 1850年
    下载: 导出CSV
  • [1] 朱乾根,林锦瑞,寿绍文,等.天气学原理和方法.北京:气象出版社,2000:565-579.

    Zhu Q G, Lin J R, Shou S W, et al. Synoptic Meteorology Principles and Methods. Beijing: China Meteorological Press, 2000: 565-579.
    [2] Miao Y C, Guo J P, Liu S H, et al. Classification of summertime synoptic patterns in Beijing and their association with boundary layer structure affecting aerosol pollution. Atmos Chem Phys, 2017, 17: 3097-3110. doi:  10.5194/acp-17-3097-2017
    [3] Miao Y C, Hu X M, Liu S H, et al. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality. Journal of Advances in Modeling Earth Systems, 2015, 7(4): 1602-1626. doi:  10.1002/2015MS000522
    [4] 初征, 郭建平. 未来气候变化对东北玉米品种布局的影响. 应用气象学报, 2018, 29(2): 165-176. doi:  10.11898/1001-7313.20180204

    Chu Z, Guo J P. Effects of climatic change on maize varieties distribution in the future of Northeast China. J Appl Meteor Sci, 2018, 29(2): 165-176. doi:  10.11898/1001-7313.20180204
    [5] 侯英雨, 张蕾, 吴门新, 等. 国家级现代农业气象业务技术进展. 应用气象学报, 2018, 29(6): 641-656. doi:  10.11898/1001-7313.20180601

    Hou Y Y, Zhang L, Wu M X, et al. Advances of modern agrometeorological service and technology in China. J Appl Meteor Sci, 2018, 29(6): 641-656. doi:  10.11898/1001-7313.20180601
    [6] 霍治国, 尚莹, 邬定荣, 等. 中国小麦干热风灾害研究进展. 应用气象学报, 2019, 30(2): 129-141. doi:  10.11898/1001-7313.20190201

    Huo Z G, Shang Y, Wu D R, et al. Review on disaster of hot dry wind for wheat in China. J Appl Meteor Sci, 2019, 30(2): 129-141. doi:  10.11898/1001-7313.20190201
    [7] 任三学, 赵花荣, 齐月, 等. 气候变化背景下麦田沟金针虫爆发性发生为害. 应用气象学报, 2020, 31(5): 620-630. doi:  10.11898/1001-7313.20200509

    Ren S X, Zhao H R, Qi Y, et al. The outbreak and damage of the Pleonomus canaliculatus in wheat field under the background of climate change. J Appl Meteor Sci, 2020, 31(5): 620-630. doi:  10.11898/1001-7313.20200509
    [8] 宋丰飞. 自然变率和外强迫影响东亚夏季风变化的数值模拟研究. 北京: 中国科学院大学, 2015.

    Song F F.Numerical Simulation of Natural Variability and External Forcing Affecting East Asian Summer Monsoon Changes.Beijing: University of Chinese Academy of Sciences, 2015.
    [9] 包庆, Wang Bin, 刘屹岷, 等. 青藏高原增暖对东亚夏季风的影响——大气环流模式数值模拟研究. 大气科学, 2008, 32(5): 997-1005. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200805000.htm

    Bao Q, Wang B, Liu Y M, et al. The impact of the Tibetan Plateau warming on the East Asian summer monsoon-A study of numerical simulation. Chin J Atmos Sci, 2008, 32(5): 997-1005. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200805000.htm
    [10] 柯宗建, 华丽娟, 钟霖浩, 等. 海温异常对东亚夏季风强度先兆信号的影响. 应用气象学报, 2015, 26(5): 536-544. doi:  10.11898/1001-7313.20150503

    Ke Z J, Hua L J, Zhong L H, et al. The influence of sea surface temperature anomaly on the East Asian summer monsoon strength and its precursor. J Appl Meteor Sci, 2015, 26(5): 536-544. doi:  10.11898/1001-7313.20150503
    [11] Tada R, Zheng H B, Clift P D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Progress in Earth & Planetary Science, 2016, 3(1): 4.
    [12] 王绍武, 叶瑾琳, 龚道溢, 等. 近百年中国年气温序列的建立. 应用气象学报, 1998, 9(4): 392-401. http://qikan.camscma.cn/article/id/19980459

    Wang S W, Ye J L, Gong D Y, et al. Construction of mean annual temperature series for the last one hundred years in China. J Appl Meteor Sci, 1998, 9(4): 392-401. http://qikan.camscma.cn/article/id/19980459
    [13] 王玉洁, 周波涛, 任玉玉, 等. 全球气候变化对我国气候安全影响的思考. 应用气象学报, 2016, 27(6): 750-758. doi:  10.11898/1001-7313.20160612

    Wang Y J, Zhou B T, Ren Y Y, et al. Impacts of global climate change on China's climate security. J Appl Meteor Sci, 2016, 27(6): 750-758. doi:  10.11898/1001-7313.20160612
    [14] He C, Wang Z Q, Zhou T J, et al. Enhanced latent heating over the Tibetan Plateau as a key to the enhanced East Asian summer monsoon circulation under a warming climate. J Climate, 2019, 32(11): 3373-3388. doi:  10.1175/JCLI-D-18-0427.1
    [15] 布和朝鲁. 东亚季风气候未来变化的情景分析——基于IPCC SRES A2和B2方案的模拟结果. 科学通报, 2003, 48(7): 737-742. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200307021.htm

    Bueh C. Simulation of the future change of East Asian monsoon climate using the IPCC SRES A2 and B2 scenarios. Chin Sci Bull, 2003, 48(7): 737-742. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200307021.htm
    [16] Yang S L, Ding Z L, Li Y Y, et al. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proceedings of the National Academy of Sciences, 2015, 112(43): 13178-13183. doi:  10.1073/pnas.1504688112
    [17] 庞轶舒, 祝从文, 马振峰, 等. 东亚夏季环流多齿轮耦合特征及其对中国夏季降水异常的影响分析. 大气科学, 2019, 43(4): 875-894. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201904013.htm

    Pang Y S, Zhu C W, Ma Z F, et al. Coupling wheels in the East Asian summer monsoon circulations and their impacts on precipitation anomalies in China. Chin J Atmos Sci, 2019, 43(4): 875-894. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201904013.htm
    [18] 王欢, 李栋梁. 人类活动排放的CO2及气溶胶对20世纪70年代末中国东部夏季降水年代际转折的影响. 气象学报, 2019, 77(2): 327-345. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902013.htm

    Wang H, Li D L. Effects of anthropogenic emissions of CO2 and aerosols on decadal transition of summer precipitation over eastern China in the late 1970s. Acta Meteor Sinica, 2019, 77(2): 327-345. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902013.htm
    [19] Chen Z L, Dong X X, Wang X, et al. Spatial change of precipitation in response to the Paleocene-Eocene thermal maximum warming in China. Global and Planetary Change, 2020, 194, 103313. doi:  10.1016/j.gloplacha.2020.103313
    [20] Sun Y, Ding Y H. Responses of South and East Asian summer monsoons to different land-sea temperature increases under a warming scenario. Chin Sci Bull, 2011, 56(25): 2718-2726. doi:  10.1007/s11434-011-4602-0
    [21] Chen L, Qu X, Huang G, et al. Projections of East Asian summer monsoon under 1.5℃ and 2℃ warming goals. Theoretical and Applied Climatology, 2019, 137: 2187-2201. doi:  10.1007/s00704-018-2720-1
    [22] 丁一汇, 李霄, 李巧萍. 气候变暖背景下中国地面风速变化研究进展. 应用气象学报, 2020, 31(1): 1-12. doi:  10.11898/1001-7313.20200101

    Ding Y H, Li X, Li Q P. Advances of surface wind speed changes over China under global warming. J Appl Meteor Sci, 2020, 31(1): 1-12. doi:  10.11898/1001-7313.20200101
    [23] 李巧萍, 丁一汇, 董文杰. SRES A2情景下未来30年我国东部夏季降水变化趋势. 应用气象学报, 2008, 19(6): 770-780. http://qikan.camscma.cn/article/id/20080617

    Li Q P, Ding Y H, Dong W J. Summer precipitation change over eastern China in future 30 years under SRES A2 scenario. J Appl Meteor Sci, 2008, 19(6): 770-780. http://qikan.camscma.cn/article/id/20080617
    [24] 陆波. 温室气体和气溶胶对全球季风和东亚季风变化的影响. 北京: 北京大学, 2013.

    Lu B.Effects of Greenhouse Gases and Aerosols on the Changes of Global Monsoon and East Asian Monsoon.Beijing: Peking University, 2013.
    [25] 汪佳伟, 汤绪, 陈葆德, 等. 全球变暖与亚洲夏季风北边缘带: CO2增倍的数值模拟. 高原气象, 2012, 31(2): 418-427. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202014.htm

    Wang J W, Tang X, Chen B D, et al. Global warming and north edge of Asian summer monsoon: Numerical experiment with doubled CO2. Plateau Meteorology, 2012, 31(2): 418-427. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202014.htm
    [26] Wu L X, Meng S J, Liu Z Y. The roles of oceans in the Asian summer monsoon response to global warming. Periodical of Ocean University of China, 2009, 39(5): 839-845. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QDHY200905012.htm
    [27] Li X Q, Ting M F, Li C H, et al. Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J Climate, 2015, 28(10): 4107-4125. doi:  10.1175/JCLI-D-14-00559.1
    [28] He B, Bao Q, Li J D, et al. Influences of external forcing changes on the summer cooling trend over East Asia. Climatic Change, 2013, 117(4): 829-841. doi:  10.1007/s10584-012-0592-4
    [29] Song F F, Zhou T J, Qian Y. Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys Res Lett, 2014, 41(2): 596-603. doi:  10.1002/2013GL058705
    [30] Li X Q, Ting M F. Understanding the Asian summer monsoon response to greenhouse warming: The relative roles of direct radiative forcing and sea surface temperature change. Climate Dyn, 2016, 49: 2863-2880.
    [31] 李霞, 梁建茵, 郑彬. 南海夏季风强度年代际变化基本特征. 应用气象学报, 2007, 18(3): 330-339. http://qikan.camscma.cn/article/id/20070355

    Li X, Liang J Y, Zheng B. Interdecadal variabilities of SCS summer monsoon intensity. J Appl Meteor Sci, 2007, 18(3): 330-339. http://qikan.camscma.cn/article/id/20070355
    [32] 杨明, 徐海明, 李维亮, 等. 近40年东亚季风变化特征及其与海陆温差关系. 应用气象学报, 2008, 19(5): 522-530. http://qikan.camscma.cn/article/id/20080502

    Yang M, Xu H M, Li W L, et al. Variations of East Asian monsoon and its relationships with land-sea temperature difference in recent 40 years. J Appl Meteor Sci, 2008, 19(5): 522-530. http://qikan.camscma.cn/article/id/20080502
    [33] 谢立安. 夏季南海季风活动的诊断分析. 南京气象学院学报, 1986(2): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198602002.htm

    Xie L A. Diagnostic study of summer monsoon over the South China Sea. Journal of Nanjing Institute of Meteorology, 1986(2): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198602002.htm
    [34] Krishnamurti T N, Ramanathan Y. Sensitivity of the monsoon onset to differential heating. J Atmos Sci, 1982, 39(6): 1290-1306. doi:  10.1175/1520-0469(1982)039<1290:SOTMOT>2.0.CO;2
    [35] 郭增元, 刘煜, 李维亮. 气溶胶影响亚洲夏季风机理的数值研究. 气象学报, 2017, 75(5): 797-810. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201705010.htm

    Guo Z Y, Liu Y, Li W L. A numerical study of the mechanism of aerosols effect on Asian summer monsoon. Acta Meteor Sinica, 2017, 75(5): 797-810. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201705010.htm
    [36] 马肖琳, 高西宁, 刘煜, 等. 气溶胶对东亚冬季风影响的数值模拟. 应用气象学报, 2018, 29(3): 333-343. doi:  10.11898/1001-7313.20180307

    Ma X L, Gao X N, Liu Y, et al. Simulations of aerosol influences on the East Asian winter monsoon. J Appl Meteor Sci, 2018, 29(3): 333-343. doi:  10.11898/1001-7313.20180307
    [37] Neale R B, Chen C C, Gettelman A, et al.Description of the NCAR Community Atmosphere Model(CAM 5.0).NCAR Technical Note NCAR/TN-486+STR, 2012.
    [38] 丁楠, 李慧岷, 张涛, 等. 地球系统模式CESM的性能建模. 2013全国高性能计算学术年会论文集, 2013: 173-181.

    Ding N, Li H M, Zhang T, et al.Performance Modeling of the Community Earth System Model CESM//National Conference on High Performance Computing, 2013: 173-181.
    [39] 廖国男, 郭彩丽, 周诗健. 大气辐射导论. 北京: 气象出版社, 2004.

    Liou K N, Guo C L, Zhou S J. An Introduction to Atmospheric Radiation. Beijing: China Meteorological Press, 2004.
    [40] Yanai M, Esbensen S, Chu J H. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci, 1973, 30(4): 611-627. doi:  10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2
    [41] 余志豪, 苗曼倩, 蒋全荣, 等. 流体力学. 北京: 气象出版社, 2007.

    Yu Z H, Miao M Q, Jiang Q R, et al. Fluid Mechanics. Beijing: China Meteorological Press, 2007.
    [42] Krishnamurti T N, Suhrahmanyam D. The 30 to 50 day mode at 850 mb during MONEX. J Atmos Sci, 1982, 39(9): 2088-2095. doi:  10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2
    [43] 陈隆勋, 朱乾根, 罗会邦, 等. 东亚季风. 北京: 气象出版社, 1995.

    Chen L X, Zhu Q G, Luo H B. East Asian Monsoon. Beijing: China Meteorological Press, 1995.
    [44] 黄荣辉, 孙凤英. 热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响. 大气科学, 1994, 18(2): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199402001.htm

    Huang R H, Sun F Y. Impacts of the thermal state and the convective activities in the tropical western warm pool on the summer climate anomalies in East Asia. Chin J Atmos Sci, 1994, 18(2): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199402001.htm
    [45] Bueh C, Shi N, Ji L R, et al. Features of the EAP events on the medium-range evolution process and the mid- and high-latitude Rossby wave activities during the Meiyu period. Chin Sci Bull, 2008, 53(4): 610-623. doi:  10.1007/s11434-008-0005-2
    [46] 史文丽, 闵锦忠, 费建芳, 等. 全球变暖背景下对流性降水变化特征及影响因子分析. 气候与环境研究, 2013, 18(1): 32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201301005.htm

    Shi W L, Min J Z, Fei J F, et al. Analysis of characteristics of convective precipitation under global warming and its impact factors. Climatic and Environmental Research, 2013, 18(1): 32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201301005.htm
  • 加载中
图(8) / 表(1)
计量
  • 摘要浏览量:  2116
  • HTML全文浏览量:  769
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-05
  • 修回日期:  2020-12-27
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回