留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国北方一作区马铃薯高产稳产区分布特征

孙爽 王春乙 宋艳玲 杨晓光

孙爽, 王春乙, 宋艳玲, 等. 我国北方一作区马铃薯高产稳产区分布特征. 应用气象学报, 2021, 32(4): 385-396. DOI:  10.11898/1001-7313.20210401..
引用本文: 孙爽, 王春乙, 宋艳玲, 等. 我国北方一作区马铃薯高产稳产区分布特征. 应用气象学报, 2021, 32(4): 385-396. DOI:  10.11898/1001-7313.20210401.
Sun Shuang, Wang Chunyi, Song Yanling, et al. Distributions of high and stable yield zones for potato in the single-cropping region in northern China. J Appl Meteor Sci, 2021, 32(4): 385-396. DOI:  10.11898/1001-7313.20210401.
Citation: Sun Shuang, Wang Chunyi, Song Yanling, et al. Distributions of high and stable yield zones for potato in the single-cropping region in northern China. J Appl Meteor Sci, 2021, 32(4): 385-396. DOI:  10.11898/1001-7313.20210401.

我国北方一作区马铃薯高产稳产区分布特征

DOI: 10.11898/1001-7313.20210401
资助项目: 

国家重点研发计划 2019YFD1002204

中国气象科学研究院基本科研业务费 2021Y026

国家自然科学基金项目 41901013

详细信息
    通信作者:

    王春乙, 邮箱: wangcy@cma.gov.cn

Distributions of High and Stable Yield Zones for Potato in the Single-cropping Region in Northern China

  • 摘要: 北方一作区马铃薯种植面积和总产量居我国首位,明确其高产稳产区分布,对马铃薯种植合理布局具有重要意义。基于1981—2019年研究区域内234个气象站点逐日气象数据以及作物、土壤数据,利用APSIM-Potato模型,以产量平均值和变异系数为高产性和稳产性评价指标,将研究区域划分为高产高稳、高产低稳、低产高稳和低产低稳4个亚区,分析不同生产水平下我国北方一作区马铃薯高产稳产区分布特征,探讨降水和土壤对马铃薯高产性和稳产性的影响。结果表明:不同生产水平下马铃薯高产区比例呈下降趋势;随着限制因素增加,高产高稳区面积比例逐渐降低,气候-土壤潜在生产水平下高产高稳区面积比例仅占研究区域总面积的13%;高产低稳区是潜在的高产高稳区,及时采取有效措施可提升稳产性。降水对马铃薯高产性和稳产性的影响大于土壤。实际生产中,降水和土壤限制下高产性和稳产性降低的区域,应注意结合当地灌溉条件配合耕作措施,以确保马铃薯高产稳产。
  • 图  1  研究区域内气象站点分布

    Fig. 1  Location of the weather stations in the study area

    图  2  不同生产水平下马铃薯产量潜力平均值(a)和变异系数(b)的累积概率分布

    Fig. 2  Distributions of the cumulative probability for the average yield potentials(a) and coefficients of variation(b) for potato under different production levels

    图  3  不同生产水平下北方一作区马铃薯高产区和稳产区分布

    Fig. 3  Distributions of yield level zones and yield stability zones under different production levels for potato in the single-cropping region in northern China

    图  4  不同生产水平下北方一作区马铃薯高产区和稳产区时间变化

    Fig. 4  Temporal trends of the station percentage for the high-yield levels, the low-yield levels, the high-yield stability and low-yield stability for potato in the single-cropping region in northern China

    图  5  不同生产水平下我国北方一作区马铃薯高产稳产区分布

    Fig. 5  Distributions of the high-stable zones for potato under different production levels in the single- cropping region in northern China

    图  6  北方一作区马铃薯降水和土壤限制下高产性和稳产性降低的区域

    Fig. 6  Distributions of negative changes in yield level and yield stability zones due to precipitation and soil for potato in the single-cropping region in northern China

    表  1  不同生产水平下马铃薯产量潜力意义及影响因素

    Table  1  The definition of yield potentials and influencing factors under different production levels

    生产水平 产量层次 影响因素 意义
    潜在生产水平 光温产量潜力Yp 辐射、温度 作物产量的上限
    雨养潜在生产水平 气候产量潜力Ycp 辐射、温度、降水 没有灌溉条件地区作物产量的上限
    气候-土壤潜在生产水平 气候-土壤产量潜力Ycsp 辐射、温度、降水、土壤 当地气候资源和土壤因素决定的产量
    下载: 导出CSV

    表  2  不同生产水平下马铃薯产量潜力模拟情景设置

    Table  2  Scenarios to simulate the yield potentials under different production levels in the APSIM-Potato

    产量层次 品种 土壤 管理
    灌溉 施肥
    光温产量潜力Yp 克新一号 适宜 充分 充分
    气候产量潜力Ycp 克新一号 适宜 雨养 充分
    气候-土壤产量潜力Ycsp 克新一号 实际 雨养 充分
    下载: 导出CSV

    表  3  不同生产水平下马铃薯高产区和稳产区面积及比例

    Table  3  Cropping areas and proportions of yield level zones and yield stability zones under different production levels

    区域 潜在生产水平 雨养潜在生产水平 气候-土壤潜在生产水平
    面积/(106 km2) 比例/% 面积/(106 km2) 比例/% 面积/(106 km2) 比例/%
    高产区 3.31 66 1.70 34 1.53 31
    低产区 1.69 34 3.30 66 3.47 69
    高稳区 3.10 62 1.43 29 1.27 25
    低稳区 1.90 38 3.57 71 3.73 75
    下载: 导出CSV

    表  4  不同生产水平下马铃薯高产稳产区面积及比例

    Table  4  Cropping areas and proportions of high-stable zones for potato under different production levels in the study region

    区域 潜在生产水平 雨养潜在生产水平 气候-土壤潜在生产水平
    面积/(106 km2) 比例/% 面积/(106 km2) 比例/% 面积/(106 km2) 比例/%
    高产高稳区 1.99 40 1.26 25 0.65 13
    高产低稳区 1.21 24 0.42 8 0.71 14
    低产高稳区 0.69 14 0.41 8 1.63 33
    低产低稳区 1.11 22 2.91 59 2.01 40
    下载: 导出CSV
  • [1] FAO. FAOSTAT. http://faostat3.fao.org/home/E.2020.
    [2] Wang N, Reidsma P, Pronk A, et al. Can potato add to China's food self-sufficiency?The scope for increasing potato production in China. European Journal of Agronomy, 2018, 101: 20-29. doi:  10.1016/j.eja.2018.07.002
    [3] 李扬, 王靖, 唐建昭, 等. 中国马铃薯主产区生产特点、限制因子和对策分析. 中国马铃薯, 2020, 34(6): 374-382. doi:  10.3969/j.issn.1672-3635.2020.06.007

    Li Y, Wang J, Tang J Z, et al. Analysis of production characteristics, restrictive factors, and strategies for main potato production areas in China. Chinese Potato Journal, 2020, 34(6): 374-382. doi:  10.3969/j.issn.1672-3635.2020.06.007
    [4] Tang J Z, Wang J, Fang Q X, et al. Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. European Journal of Agronomy, 2018, 98: 82-94. doi:  10.1016/j.eja.2018.05.008
    [5] Jansky S H, Jin L P, Xie K Y, et al. Potato production and breeding in China. Potato Research, 2009, 52(1): 57-65. doi:  10.1007/s11540-008-9121-2
    [6] 腾宗璠, 张畅, 王永智. 我国马铃薯适宜种植地区的分析. 中国农业科学, 1989, 22(2): 35-44. doi:  10.3321/j.issn:0578-1752.1989.02.005

    Teng Z F, Zhang C, Wang J Z. Study on China's potato cultivation divisions. Scientia Agricultura Sinica, 1989, 22(2): 35-44. doi:  10.3321/j.issn:0578-1752.1989.02.005
    [7] 隋启君, 李先平, 杨万林. 中国马铃薯生产情况分析. 西南农业学报, 2008, 21(4): 1182-1188. doi:  10.3969/j.issn.1001-4829.2008.04.067

    Sui Q J, Li X P, Yang W L. Situation analysis of potatoes production in China. Southwest China Journal of Agricultural Sciences, 2008, 21(4): 1182-1188. doi:  10.3969/j.issn.1001-4829.2008.04.067
    [8] Wang Y D, Liu X L, Ren G X, et al. Analysis of the spatiotemporal variability of droughts and the effects of drought on potato production in northern China. Agricultural and Forest Meteorology, 2019, 264: 334-342. doi:  10.1016/j.agrformet.2018.10.019
    [9] 何勇, 董文杰, 严晓瑜. 基于MODIS的我国北方农牧交错带植被生长特征. 应用气象学报, 2008, 19(6): 716-721. doi:  10.3969/j.issn.1001-7313.2008.06.011

    He Y, Dong W J, Yan X Y. Characteristics of vegetation growth in the farming-pastoral zone over the North parts of China based on MODIS data. Journal of Applied Meteorological Science, 2008, 19(6): 716-721. doi:  10.3969/j.issn.1001-7313.2008.06.011
    [10] 孙文堂, 苗春生, 沈建国, 等. 基于GIS的马铃薯种植气候区划及风险区划的研究. 南京气象学院学报, 2004, 27(5): 650-659. doi:  10.3969/j.issn.1674-7097.2004.05.009

    Sun W T, Miao C S, Shen J G, et al. Potato agricultural climate and harvest risk demarcation using GIS technique. Journal of Nanjing Institute of Meteorology, 2004, 27(5): 650-659. doi:  10.3969/j.issn.1674-7097.2004.05.009
    [11] 王连喜, 朱贇贇, 李剑萍, 等. 宁夏马铃薯种植的气候分区和风险评估. 中国农业气象, 2011, 32(1): 100-105. doi:  10.3969/j.issn.1000-6362.2011.01.018

    Wang L X, Zhu Y Y, Li J P, et al. Climatic division and risk evaluation for potato planting in Ningxia. Chinese Journal of Agrometeorology, 2011, 32(1): 100-105. doi:  10.3969/j.issn.1000-6362.2011.01.018
    [12] 徐玲玲, 毛留喜, 马雅丽. 基于细网格的山西省马铃薯种植气候区划. 干旱地区农业研究, 2018, 36(5): 251-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201805036.htm

    Xu L L, Mao L X, Ma Y L. Climatic regionalization for potato planting in Shanxi Province based on fine gridding. Agricultural Research in the Arid Areas, 2018, 36(5): 251-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201805036.htm
    [13] 屈振江, 周广胜, 魏钦平. 苹果花期冻害气象指标和风险评估. 应用气象学报, 2016, 27(4): 385-395. doi:  10.11898/1001-7313.20160401

    Qu Z J, Zhou G S, Wei Q P. Meteorological disaster index and risk assessment of frost injury during apple florescence. Journal of Applied Meteorological Science, 2016, 27(4): 385-395. doi:  10.11898/1001-7313.20160401
    [14] 张蕾, 霍治国, 黄大鹏, 等. 10-11月海南省瓜菜苗期湿涝风险评估与区划. 应用气象学报, 2015, 26(4): 432-441. doi:  10.11898/1001-7313.20150405

    Zhang L, Huo Z G, Huang D P, et al. Assessment and distribution of waterlogging damage risks for melons and vegetables in Hainan province from October to November. Journal of Applied Meteorological Science, 2015, 26(4): 432-441. doi:  10.11898/1001-7313.20150405
    [15] Sun J S, Zhou G S, Sui X H. Climatic suitability of the distribution of the winter wheat cultivation zone in China. European Journal of Agronomy, 2012, 43: 77-86. doi:  10.1016/j.eja.2012.05.009
    [16] 王永利, 侯琼, 苗百岭, 等. 内蒙古马铃薯干旱风险区划. 应用气象学报, 2017, 28(4): 504-512. doi:  10.11898/1001-7313.20170411

    Wang Y L, Hou X, Miao B L, et al. Drought risk regionalization of potatoes in Inner Mongolia. Journal of Applied Meteorological Science, 2017, 28(4): 504-512. doi:  10.11898/1001-7313.20170411
    [17] 程晋昕, 段长春, 闫生杰. 基于MaxEnt模型的薄壳山核桃气候适宜性区划. 应用气象学报, 2020, 31(5): 631-640. doi:  10.11898/1001-7313.20200510

    Cheng J X, Duan C C, Yan S J. Climate suitability regionalization of Pecan based on MaxEnt model. Journal of Applied Meteorological Science, 2020, 31(5): 631-640. doi:  10.11898/1001-7313.20200510
    [18] 何燕, 李政, 廖雪萍. 基于GIS的巴西陆稻IAPAR-9种植气候区划研究. 应用气象学报, 2007, 18(2): 219-224. doi:  10.3969/j.issn.1001-7313.2007.02.012

    He Y, Li Z, Liao X P. Climatic zoning of Brazilian upland rice (IAPAR-9) planting based upon GIS. Journal of Applied Meteorological Science, 2007, 18(2): 219-224. doi:  10.3969/j.issn.1001-7313.2007.02.012
    [19] 李颖, 赵国强, 陈怀亮, 等. 基于冬小麦农业气候分区的WOFOST模型参数标定. 应用气象学报, 2021, 32(1): 38-51. doi:  10.11898/1001-7313.20210104

    Li Y, Zhao G Q, Chen H L, et al. WOFOST model parameter calibration based on agro-climatic division of winter wheat. Journal of Applied Meteorological Science, 2021, 32(1): 38-51. doi:  10.11898/1001-7313.20210104
    [20] 于振文. 作物栽培学-北方本. 北京: 中国农业出版社, 2003: 11-14.

    Yu Z W. Crop Cultivation Science: North. Beijing: China Agriculture Press, 2003: 11-14.
    [21] Zhao J, Yang X G. Spatial patterns of yield-based cropping suitability and its driving factors in the three main maize-growing regions in China. International Journal of Biometeorology, 2019, 63: 1659-1668. doi:  10.1007/s00484-019-01783-1
    [22] McCown R L, Hammer G L, Hargreaves J N G, et al. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems, 1996, 50: 255-271. doi:  10.1016/0308-521X(94)00055-V
    [23] Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 2003, 18: 267-288. doi:  10.1016/S1161-0301(02)00108-9
    [24] 李扬, 王靖, 唐建昭, 等. 播期和品种变化对马铃薯产量的耦合效应. 中国生态农业学报, 2019, 27(2): 296-304. DOI: 10.13930/j.cnki.cjea.180707.

    Li Y, Wang J, Tang J Z, et al. Coupling impacts of planting date and cultivar on potato yield. Chinese Journal of Eco-Agriculture, 2019, 27(2): 296-304. DOI: 10.13930/j.cnki.cjea.180707.
    [25] 龚高法, 简慰民. 我国植物物候期的地理分布. 地理学报, 1983, 50(1): 33-40. doi:  10.3321/j.issn:0375-5444.1983.01.004

    Gong G F, Jian W M. On the geographical distribution of phenodate in China. Acta Geographica Sinica, 1983, 50(1): 33-40. doi:  10.3321/j.issn:0375-5444.1983.01.004
    [26] 程雪, 孙爽, 张方亮, 等. 我国北方地区苹果干旱时空分布特征. 应用气象学报, 2020, 31(1): 63-73. doi:  10.11898/1001-7313.20200106

    Cheng X, Sun S, Zhang F L, et al. Spatial and temporal distributions of apple drought in Northern China. Journal of Applied Meteorological Science, 2020, 31(1): 63-73. doi:  10.11898/1001-7313.20200106
    [27] Zhao J, Yang X G. Distribution of high-yield and high-yield stability zones for maize yield potential in the main growing regions in China. Agriculutral and Forest Meteorology, 2018, 248: 511-517. doi:  10.1016/j.agrformet.2017.10.016
    [28] 刘健, 蒋建莹. 不同观测分辨率强台风云系的遥感特征. 应用气象学报, 2014, 25(1): 1-10. http://qikan.camscma.cn/article/id/20140101

    Liu J, Jiang J Y. Multi-scale data sensitivity study on cloud analysis of strong typhoon. Journal of Applied Meteorological Science, 2014, 25(1): 1-10. http://qikan.camscma.cn/article/id/20140101
    [29] 施能. 气象科研与预报中的多元分析方法. 北京: 气象出版社, 1995: 174-176.

    Shi N. Multi-analysis in Meteorology Research and Prediction. Beijing: China Meteorological Press, 1995: 174-176.
    [30] Leng G Y. Recent changes in county-level corn yield variability in the United States from observations and crop models. Science of the Total Environment, 2017, 607/608: 683-690. doi:  10.1016/j.scitotenv.2017.07.017
    [31] Tang J Z, Wang J, Wang E L, et al. Identifying key meteorological factors to yield variation of potato and the optimal planting date in the agro-pastoral ecotone in North China. Agricultural and Forest Meteorology, 2018(256/257): 283-291. http://smartsearch.nstl.gov.cn/paper_detail.html?id=b8f0ada2600d7778c7c76679d5bab0da
    [32] Wang F X, Feng S Y, Hou X Y, et al. Potato growth with and without plastic mulch in two typical regions of Northern China. Field Crops Research, 2009, 110: 123-129. doi:  10.1016/j.fcr.2008.07.014
    [33] Hou X Y, Wang F X, Han J J, et al. Duration of plastic mulch for potato growth under drip irrigation in an arid region of Northwest China. Agricultural and Forest Meteorology, 2010, 150: 115-121. doi:  10.1016/j.agrformet.2009.09.007
    [34] 侯贤清, 李荣. 免耕覆盖对宁南山区土壤物理性状及马铃薯产量的影响. 农业工程学报, 2015, 31(19): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201519016.htm

    Hou X Q, Li R. Effects of mulching with no-tillage on soil physical properties and potato yield in mountain area of southern Ningxia. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201519016.htm
    [35] 孙爽, 杨晓光, 赵锦, 等. 全球气候变暖对中国种植制度的可能影响XI. 气候变化背景下中国冬小麦潜在光温适宜种植区变化特征. 中国农业科学, 2015, 48(10): 1926-1941. doi:  10.3864/j.issn.0578-1752.2015.10.006

    Sun S, Yang X G, Zhao J, et al. The possible effects of global warming on cropping systems in China XI. The variation of potential light-temperature suitable cultivation zone of winter wheat in China under climate change. Scientia Agricultura Sinica, 2015, 48(10): 1926-1941. doi:  10.3864/j.issn.0578-1752.2015.10.006
    [36] 农业工程技术编辑部. 中国马铃薯优势区域布局规划(2008-2015年). 农业工程技术, 2009(11): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGN200911003.htm

    Editorial Department of Agricultural Engineering and Technology. The layout planning of dominant potato growing area in China from 2008 to 2015. Agricultural Engineering Technology, 2009(11): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGN200911003.htm
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  54
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-05-25
  • 刊出日期:  2021-07-31

目录

    /

    返回文章
    返回