留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国南方设施番茄高温热害风险区划

郑艳姣 杨再强 王琳 杨世琼

郑艳姣, 杨再强, 王琳, 等. 中国南方设施番茄高温热害风险区划. 应用气象学报, 2021, 32(4): 432-442. DOI:  10.11898/1001-7313.20210405..
引用本文: 郑艳姣, 杨再强, 王琳, 等. 中国南方设施番茄高温热害风险区划. 应用气象学报, 2021, 32(4): 432-442. DOI:  10.11898/1001-7313.20210405.
Zheng Yanjiao, Yang Zaiqiang, Wang Lin, et al. Refined risk zoning of high temperature and heat damage to greenhouse tomato in southern China. J Appl Meteor Sci, 2021, 32(4): 432-442. DOI:  10.11898/1001-7313.20210405.
Citation: Zheng Yanjiao, Yang Zaiqiang, Wang Lin, et al. Refined risk zoning of high temperature and heat damage to greenhouse tomato in southern China. J Appl Meteor Sci, 2021, 32(4): 432-442. DOI:  10.11898/1001-7313.20210405.

中国南方设施番茄高温热害风险区划

DOI: 10.11898/1001-7313.20210405
资助项目: 

国家重点研发计划 2019FYD1002202

国家自然科学基金项目 41775104

详细信息
    通信作者:

    杨再强, 邮箱: yzq@nuist.edu.cn

Refined Risk Zoning of High Temperature and Heat Damage to Greenhouse Tomato in Southern China

  • 摘要: 以中国南方设施番茄为研究对象,利用1990—2019年3—9月359个气象站点的气象资料、温室小气候实测资料以及高温控制试验资料,通过BP神经网络模拟南方塑料大棚内日最高气温,结合高温控制试验资料,采用相关性分析和主成分分析方法,构建适用于中国南方设施番茄高温热害等级指标体系,开展设施番茄高温热害风险区划。结果表明:1990—2019年高温热害发生频率增加趋势不显著,轻度高温热害发生频率最高,其次是中度高温热害,各等级高温热害发生频率变化趋势均不显著,且年际变化较大。南方设施番茄高温热害高风险区主要分布在广东西部和东部、广西东部和西部以及云南北部、中部和南部;次高风险区分布在湖南南部、广西大部、广东中北部、江西南部以及福建;中度风险区分布在湖南中北部、江西北部、浙江、安徽、湖北、重庆;其他地区为低风险区。
  • 图  1  研究区及气象站点分布

    Fig. 1  Distribution of target area and meteorological stations

    图  2  日最高气温的训练值与实测值

    Fig. 2  Training and measured daily maximum temperature

    图  3  设施番茄高温处理后各指标间的相关系数

    Fig. 3  Correlation coefficients of various indicators of greenhouse tomato after high temperature treatments

    图  4  设施番茄不同等级高温热害发生频率

    Fig. 4  Frequency of different grades of high temperature and heat damage for greenhouse tomato

    图  5  设施番茄高温热害风险指数空间分布

    Fig. 5  The risk index of high temperature and heat damage for greenhouse tomato

    表  1  小气候资料来源

    Table  1  Sources of microclimate data

    地点 采集时段 样本量
    江苏省宿迁市 2008-03-19—09-23 191
    上海市 2009-03-21—09-30,2010-03-01—09-30,2011-03-01—04-02 474
    浙江省慈溪市 2007-03-21—05-09,2008-03-01—06-24,07-01—30,2009-04-26—05-25 224
    浙江省温州市 2010-03-01—06-10 103
    福建省福清市 2017-05-01—09-30,2018-03-01—09-30 368
    福建省连城县 2017-06-08—29,2017-07-06—09-30,2018-03-01—09-22,2019-03-01—03-31,2019-04-23—09-03 449
    下载: 导出CSV

    表  2  高温处理下各指标主成分分析特征向量

    Table  2  The first 5 eigenvectors of principal component analysis of each index after high temperature treatments

    参数 特征向量
    第1主成分 第2主成分 第3主成分 第4主成分 第5主成分
    Pn 0.066 0.092 0.006 -0.159 -0.033
    Slp 0.065 0.065 -0.037 -0.133 -0.112
    Clp -0.065 0.038 -0.011 0.029 0.152
    Pmax 0.066 0.069 0.035 -0.178 0.111
    Eaq 0.054 0.090 -0.091 -0.237 0.153
    Gs 0.056 0.083 -0.186 -0.173 0.116
    Ci -0.056 0.101 0.101 -0.253 0.118
    Ls 0.056 -0.101 -0.101 0.252 -0.119
    Tr 0.044 0.135 -0.256 0.074 -0.166
    Ewu 0.010 -0.126 0.384 -0.117 0.184
    φ 0.050 -0.145 0.018 0.097 -0.010
    Pit 0.067 -0.001 0.145 -0.003 -0.115
    Ff 0.067 -0.074 0.032 -0.096 0.015
    Pia 0.062 -0.095 0.086 0.139 0.207
    Ac 0.023 0.157 0.175 -0.140 -0.447
    Tc 0.056 0.084 0.005 -0.027 0.502
    Dc -0.043 0.166 -0.042 0.265 0.105
    Ec 0.058 0.083 -0.057 0.085 0.343
    Cha 0.061 -0.112 0.025 -0.145 -0.023
    Chb 0.055 -0.045 -0.054 0.391 0.183
    Sod 0.045 0.126 0.203 0.247 -0.161
    Pod -0.030 0.153 0.235 0.073 0.289
    Cat 0.042 0.135 0.164 0.358 -0.161
    Mda -0.069 0.002 -0.065 0.112 0.120
    下载: 导出CSV

    表  3  不同处理下IHS

    Table  3  IHS under different treatments

    处理日数/d 高温胁迫
    T38℃ T41℃ T44℃
    3 0.157 0.17 0.199
    6 0.201 0.251 0.317
    9 0.285 0.351 0.468
    12 0.316 0.431 0.621
    下载: 导出CSV

    表  4  设施番茄高温热害等级划分

    Table  4  Classification of high temperature and heat damage of greenhouse tomato

    热害等级 日最高气温(T)/℃ 持续时间(D)/d
    轻度 36 < T≤38 3 < D≤6
    T>38 2≤D≤3
    中度 36 < T≤38 6 < D≤12
    38 < T≤41 3 < D≤9
    T>41 3 < D≤6
    重度 36 < T≤38 D>12
    38 < T≤41 D>9
    T>41 D>6
    下载: 导出CSV
  • [1] Rothan C, Diouf I, Causse M. Trait discovery and editing in tomato. Plant Journal, 2019, 97(1): 73-90. doi:  10.1111/tpj.14152
    [2] Chittaranjan K. Genomic Designing of Climate-smart Vegetable Crops. Switzerland: Springer International Publishing, 2020.
    [3] Wang X, Jia Y, Peng S, et al. Root growth, fruit yield and water use efficiency of greenhouse grown tomato under different irrigation regimes and nitrogen levels. J Plant Growth Regul, 2018, 38: 400-415. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMTE1EiBhMTRmMDBlMTg4OGMwYjNmNDQ3N2Q3NGY0NmU2N2Y1NxoINmI5cWo4bWk%3D
    [4] 李天来. 我国设施蔬菜科技与产业发展现状及趋势. 中国农村科技, 2016(5): 75-77. doi:  10.3969/j.issn.1005-9768.2016.05.024

    Li T L. The status and trend of facility vegetable technology and industry development in China. Chin Rural Sci Tech, 2016(5): 75-77. doi:  10.3969/j.issn.1005-9768.2016.05.024
    [5] 丁一汇, 李霄, 李巧萍. 气候变暖背景下中国地面风速变化研究进展. 应用气象学报, 2020, 31(1): 1-12. doi:  10.11898/1001-7313.20200101

    Ding Y H, Li X, Li Q P. Advances of surface wind speed change over China under global warming. J Appl Meteor Sci, 2020, 31(1): 1-12. doi:  10.11898/1001-7313.20200101
    [6] 董晓峣, 武炳义. 江淮地区夏季高温事件与北极冷异常的动力联系. 应用气象学报, 2019, 30(4): 431-442. doi:  10.11898/1001-7313.20190404

    Dong X Y, Wu B Y. Dynamic linkages between heat wave events in Jianghuai region and arctic summer cold anomaly. J Appl Meteor Sci, 2019, 30(4): 431-442. doi:  10.11898/1001-7313.20190404
    [7] 林爱兰, 谷德军, 彭冬冬, 等. 近60年我国东部区域性持续高温过程变化特征. 应用气象学报, 2021, 32(3): 302-314. doi:  10.11898/1001-7313.20210304

    Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heat event in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. doi:  10.11898/1001-7313.20210304
    [8] 安晓宇. 气象灾害对农业生产影响的研究. 哈尔滨: 东北农业大学, 2018.

    An X Y. Research on the Impact of Meteorological Disasters on Agricultural Production. Harbin: Northeast Agricultural University, 2018.
    [9] Shamshiri R R, Kalantari F, Ting K C, et al. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int J Agric Biol Eng, 2018, 11(1): 1-22.
    [10] 杨世琼, 杨再强, 蔡霞, 等. 高温高湿胁迫下设施番茄光响应曲线的拟合. 生态学杂志, 2018, 37(7): 2003-2012. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201807012.htm

    Yang S Q, Yang Z Q, Cai X, et al. Simulation of light response of photosynthesis for greenhouse tomato leaves under high temperature and high humidity stress. Chin J Ecol, 2018, 37(7): 2003-2012. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201807012.htm
    [11] 鲍恩财. 装配式日光温室主动蓄热循环系统传热特性研究. 杨凌: 西北农林科技大学, 2018.

    Bao E C. Research on Heat Transfer Characteristics of Active Heat Storage Cycle System in Prefabricated Solar Greenhouse. Yangling: Northwest A&F University, 2018.
    [12] Zheng Y J, Yang Z Q, Xu C, et al. The interactive effects of daytime high temperature and humidity on growth and endogenous hormone concentration of tomato seedlings. Hort Science, 2020, 55(10): 1575-1583. http://www.researchgate.net/publication/347766206_The_Interactive_Effects_of_Daytime_High_Temperature_and_Humidity_on_Growth_and_Endogenous_Hormone_Concentration_of_Tomato_Seedlings
    [13] 颜彩燕, 张美丽, 黄济, 等. 南方连栋塑料温室环境调控技术. 农业工程技术, 2018, 38(4): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-NSGJ201804008.htm

    Yan C Y, Zhang M L, Huang J, et al. Environmental control technology of southern multi-span plastic greenhouse. Agri Eng Tech, 2018, 38(4): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-NSGJ201804008.htm
    [14] Li Z M, Palmer W M, Martin A P, et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J Exp Bot, 2012, 63(3): 1155-1166. doi:  10.1093/jxb/err329
    [15] 黄琴琴, 杨再强, 刘显男, 等. 苗期高温高湿影响番茄花芽分化进程的机理探讨. 中国农业气象, 2021, 42(1): 56-68.

    Huang Q Q, Yang Z Q, Liu X N, et al. Discussion on the mechanism of effects of high temperature and humidity on tomato flower bud differentiation in seedling stage. Chin J Agrom, 2021, 42(1): 56-68.
    [16] 韦婷婷, 杨再强, 王明田, 等. 高温与空气湿度交互对花期番茄植株水分生理的影响. 中国农业气象, 2019, 40(5): 317-326. doi:  10.3969/j.issn.1000-6362.2019.05.006

    Wei T T, Yang Z Q, Wang M T, et al. Effects of high temperature and different air humidity on water physiology of flowering tomato seedlings. Chin J Agrom, 2019, 40(5): 317-326. doi:  10.3969/j.issn.1000-6362.2019.05.006
    [17] 赵勇竣, 徐术菁, 王钊, 等. 高温胁迫对3个番茄品种生长和生理指标的影响. 江苏农业科学, 2019, 47(17): 147-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201917035.htm

    Zhao Y J, Xu S J, Wang Z, et al. Effects of high temperature stress on the growth and physiological indexes of three tomato varieties. Jiangsu Agric Sci, 2019, 47(17): 147-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201917035.htm
    [18] 韦婷婷. 高温下提高空气湿度对设施番茄果实有机酸代谢和内在品质的影响. 南京: 南京信息工程大学, 2020.

    Wei T T. Effects of Elevated Air Humidity at High Temperature on Organic Acid Metabolism and Intrinsic Quality of Facility Tomato Fruits. Nanjing: Nanjing University of Information Science & Technology, 2020.
    [19] 赵和丽. 高温高湿对设施番茄果实生长及糖、氮代谢的影响. 南京: 南京信息工程大学, 2020.

    Zhao H L. Effects of High Temperature and High Humidity on Tomato Fruit Growth, Sugar and Nitrogen Metabolism in Greenhouse. Nanjing: Nanjing University of Information Science & Technology, 2020.
    [20] 喻树龙, 王健, 杨晓光, 等. 新疆加工番茄适生种植气候区划. 中国农业气象, 2005, 26(4): 268-271. doi:  10.3969/j.issn.1000-6362.2005.04.016

    Yu S L, Wang J, Yang X G, et al. Climatic regionalization of suitable planting of processing tomato in Xinjiang. Chin J Agrom, 2005, 26(4): 268-271. doi:  10.3969/j.issn.1000-6362.2005.04.016
    [21] 季芬. 石河子垦区加工番茄精细气候区划分析. 新疆农垦科技, 2016, 39(10): 61-63. doi:  10.3969/j.issn.1001-361X.2016.10.030

    Ji F. Analysis of fine climatic regionalization of tomato processing in Shihezi reclamation area. Xinjiang Farm Res Sci Tech, 2016, 39(10): 61-63. doi:  10.3969/j.issn.1001-361X.2016.10.030
    [22] 张波, 胡家敏, 谷晓平, 等. 基于气候适宜度的贵州番茄精细化农业气候区划. 北方园艺, 2018(2): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201802039.htm

    Zhang B, Hu J M, Gu X P, et al. Precise comprehensive agricultural climate division for tomato in Guizhou province based on climatic suitability models. North Hort, 2018(2): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201802039.htm
    [23] 王尚明, 张文红, 曾凯, 等. 早稻春季低温气象灾害指标研究. 江西农业学报, 2012, 24(6): 176-178. doi:  10.3969/j.issn.1001-8581.2012.06.052

    Wang S M, Zhang W H, Zeng K, et al. Study on meteorological indexes of spring low temperature injury to early rice. Acta Agri Jiangxi, 2012, 24(6): 176-178. doi:  10.3969/j.issn.1001-8581.2012.06.052
    [24] 彭晓丹, 杨再强, 柳笛, 等. 温室黄瓜低温气象灾害指标. 气象科技, 2013, 41(2): 394-400. doi:  10.3969/j.issn.1671-6345.2013.02.034

    Peng X D, Yang Z Q, Liu D, et al. Study of low-temperature disaster index of greenhouse cucumbers. Meteor Sci Tech, 2013, 41(2): 394-400. doi:  10.3969/j.issn.1671-6345.2013.02.034
    [25] 肖芳. 高温胁迫对苗期红提葡萄生理及基因表达特性的影响. 南京: 南京信息工程大学, 2018.

    Xiao F. Effects of High-temtperature Stress on Physiological and Gene Expression Characteristics of Grapevine (vitis vinifera L. Hongti) during Seedling Stage. Nanjing: Nanjing University of Information Science & Technology, 2018.
    [26] 韦婷婷, 杨再强, 王琳, 等. 玻璃温室和塑料大棚内逐时气温模拟模型. 中国农业气象, 2018, 39(10): 644-655. doi:  10.3969/j.issn.1000-6362.2018.10.003

    Wei T T, Yang Z Q, Wang L, et al. Simulation model of hourly air temperature inside glass greenhouse and plastic greenhouse. Chin J Agrom, 2018, 39(10): 644-655. doi:  10.3969/j.issn.1000-6362.2018.10.003
    [27] 杨世琼, 杨再强, 王琳, 等. 高温高湿交互对设施番茄叶片光合特性的影响. 生态学杂志, 2018, 37(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201801011.htm

    Yang S Q, Yang Z Q, Wang L, et al. Effect of high humidity and high temperature interaction on photosynthetic characteristics of greenhouse tomato crops. Chin J Ecol, 2018, 37(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201801011.htm
    [28] 柳芳, 陈思宁, 李春, 等. 天津市日光温室热量资源评价及其茬口搭配标准. 北方园艺, 2018, 48(9): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201809019.htm

    Liu F, Chen S Y, Li C, et al. Evaluation of heat resources and crop collocation standard of solar greenhouse in Tianjin. North Hort, 2018, 48(9): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201809019.htm
    [29] 郭林茂, 常娟, 徐洪亮, 等. 基于BP神经网络和FEFLOW模型模拟预测多年冻土活动层温度——以青藏高原风火山地区为例. 冰川冻土, 2020, 42(2): 399-411. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202002010.htm

    Guo L M, Chang J, Xu H L, et al. Simulation and prediction of permafrost active layer temperature based on BP neural network and FEFLOW model: Take the Fenghuoshan area on the Tibetan Plateau as an example. J Glaciol Geocryol, 2020, 42(2): 399-411. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202002010.htm
    [30] 高丽娜, 孙擎, 郭翠荣, 等. 山西日光温室逐日极端气温预测模型研究. 中国农学通报, 2015, 31(15): 240-246. doi:  10.11924/j.issn.1000-6850.casb14120160

    Gao L N, Sun Q, Guo C R, et al. Forecast model of daily extreme temperature in solar greenhouse in Shanxi Province. Chin Agric Sci Bull, 2015, 31(15): 240-246. doi:  10.11924/j.issn.1000-6850.casb14120160
    [31] 王春玲, 魏瑞江, 申双和, 等. 基于BP神经网络的冬季日光温室小气候模拟. 中国农学通报, 2014, 30(5): 149-157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201405027.htm

    Wang C L, Wei R J, Shen S H, et al. Microclimate simulation of sunlight greenhouse in winter based on BP neural network. Chin Agric Sci Bull, 2014, 30(5): 149-157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201405027.htm
    [32] 王琳, 杨再强, 王明田, 等. 空气相对湿度对高温下番茄幼苗营养物质含量及干物质分配的影响. 中国农业气象, 2018, 39(5): 304-313. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201805002.htm

    Wang L, Yang Z Q, Wang M T, et al. Effect of air humidity on nutrient content and dry matter distribution of tomato seedlings under high temperature. Chin J Agrom, 2018, 39(5): 304-313. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201805002.htm
    [33] 王纯枝, 霍治国, 郭安红, 等. 中国北方冬小麦蚜虫气候风险评估. 应用气象学报, 2021, 32(2): 160-174. doi:  10.11898/1001-7313.20210203

    Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi:  10.11898/1001-7313.20210203
    [34] 杨建莹, 霍治国, 王培娟, 等. 中国北方苹果干旱等级指标构建及危险性评价. 应用气象学报, 2021, 32(1): 25-37. doi:  10.11898/1001-7313.20210103

    Yang J Y, Huo Z H, Wang P J, et al. Evaluation index construction and hazard risk assessment on apple drought in northern China. J Appl Meteor Sci, 2021, 32(1): 25-37. doi:  10.11898/1001-7313.20210103
    [35] 程雪, 孙爽, 张镇涛, 等. 我国北方地区苹果不同干旱等级时空特征. 应用气象学报, 2020, 31(4): 405-416. doi:  10.11898/1001-7313.20200403

    Cheng X, Sun S, Zhang Z T, et al. Spatial-temporal distribution of apples with different drought level in northern China. J Appl Meteor Sci, 2020, 31(4): 405-416. doi:  10.11898/1001-7313.20200403
    [36] 刘景鹏. 中国南方夏季降水的年代际变化特征和机理分析. 北京: 中国气象科学研究院, 2018.

    Liu J P. Interdecadal Variabilities and Mechanisms of Southern China Summer Rainfall. Beijing: Chinese Academy of Meteorological Sciences, 2018.
    [37] 陈丽娟, 赵俊虎, 顾薇, 等. 汛期我国主要雨季进程成因及预测应用进展. 应用气象学报, 2019, 30(4): 385-400. doi:  10.11898/1001-7313.20190401

    Chen L J, Zhao J H, Gu W, et al. Advances of research and application on major rainy seasons in China. J Appl Meteor Sci, 2019, 30(4): 385-400. doi:  10.11898/1001-7313.20190401
    [38] 刘伯奇, 祝从文. 中国夏季降水预测因子潜在技巧分布图及应用. 应用气象学报, 2020, 31(5): 570-582. doi:  10.11898/1001-7313.20200505

    Liu B Q, Zhu C W. Potential skill map of predictors applied to the seasonal forecast of summer. J Appl Meteor Sci, 2020, 31(5): 570-582. doi:  10.11898/1001-7313.20200505
    [39] 梅海霞, 梁信忠, 曾明剑, 等. 2015-2017年夏季南京雨滴谱特征. 应用气象学报, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111

    Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  27
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-06-10
  • 刊出日期:  2021-07-31

目录

    /

    返回文章
    返回