留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温胁迫对猕猴桃叶片叶绿素荧光特性的影响

李化龙 王景红 张维敏 柏秦凤 张焘 潘宇鹰 权文婷

李化龙, 王景红, 张维敏, 等. 高温胁迫对猕猴桃叶片叶绿素荧光特性的影响. 应用气象学报, 2021, 32(4): 468-478. DOI:  10.11898/1001-7313.20210408..
引用本文: 李化龙, 王景红, 张维敏, 等. 高温胁迫对猕猴桃叶片叶绿素荧光特性的影响. 应用气象学报, 2021, 32(4): 468-478. DOI:  10.11898/1001-7313.20210408.
Li Hualong, Wang Jinghong, Zhang Weimin, et al. Effects of high temperature stress on leaf chlorophyll fluorescence characteristics of kiwifruit. J Appl Meteor Sci, 2021, 32(4): 468-478. DOI:  10.11898/1001-7313.20210408.
Citation: Li Hualong, Wang Jinghong, Zhang Weimin, et al. Effects of high temperature stress on leaf chlorophyll fluorescence characteristics of kiwifruit. J Appl Meteor Sci, 2021, 32(4): 468-478. DOI:  10.11898/1001-7313.20210408.

高温胁迫对猕猴桃叶片叶绿素荧光特性的影响

DOI: 10.11898/1001-7313.20210408
资助项目: 

国家重点研发计划 2019YFD1002202

详细信息
    通信作者:

    张维敏, 邮箱: 404312067@qq.com

Effects of High Temperature Stress on Leaf Chlorophyll Fluorescence Characteristics of Kiwifruit

  • 摘要: 为探讨高温对猕猴桃叶片光合机构的影响,建立基于叶绿素荧光反应的高温热害识别指标,利用叶绿素快速荧光诱导动力学分析技术,研究不同温度胁迫下猕猴桃叶片8类叶绿素荧光的变化特征。结果表明:单位面积捕获的光能、单位面积有活性的反应中心数量、300 μs处相对可变荧光强度差值在30℃≤T≤54℃时均受温度胁迫影响,属光系统Ⅱ敏感位点参数,其中单位面积捕获的光能、单位面积有活性的反应中心数量随温度升高呈直线下降趋势,300 μs处相对可变荧光强度差值随温度升高呈指数上升趋势;初始荧光、最大荧光、最大光化学效率、单位面积的热耗散、单位面积用于电子传递的能量在较低温度胁迫下稳定少变,在较高温度胁迫下变化加剧,属光系统Ⅱ次敏感位点参数;多数叶绿素荧光参数在39℃和45℃存在两个突变临界点;叶绿素各荧光参数特征显示,猕猴桃叶片在30℃≤T < 39℃出现轻度温度胁迫,39℃≤T < 45℃出现中度温度胁迫,T≥45℃出现重度温度胁迫。
  • 图  1  不同高温胁迫下猕猴桃叶片快速叶绿素荧光诱导动力学曲线

    Fig. 1  The fast chlorophyll fluorescence induction dynamics curve of kiwifruit leaves under different high temperature stress conditions

    图  2  高温胁迫对猕猴桃叶片ΔVt影响

    VK,ΔVJ和ΔVI为分别在300 μs,2 ms和30 ms处测定的ΔVt)

    Fig. 2  Effects of high temperature stress on the relative variable fluorescence (ΔVt) for kiwifruit leaves

    VK, ΔVJ and ΔVI represent the relative variable fluorescence at t=300 μs, 2 ms, 30 ms, respectively)

    图  3  高温胁迫对猕猴桃叶片Wt及ΔWt影响

    Fig. 3  Effects of high temperature stress on the relative variable fluorescence Wt and ΔWt for kiwifruit leaves

    图  4  高温胁迫对猕猴桃叶片FO影响

    Fig. 4  Effects of high temperature stress on FO of kiwifruit leaves

    图  5  高温胁迫对猕猴桃叶片Fm影响

    Fig. 5  Effects of high temperature stress on Fm of kiwifruit leaves

    图  6  高温胁迫对猕猴桃叶片Fa影响

    Fig. 6  Effects of high temperature stress on Fa of kiwifruit leaves

    图  7  高温胁迫对猕猴桃叶片Tr, Et, Dd, Rm影响

    Fig. 7  Effects of high temperature stress on Tr, Et, Dd, Rm of kiwifruit leaves

    表  1  快速叶绿素荧光诱导动力学曲线(OJIP)分析中使用的术语和公式

    Table  1  Formulae and terms used in the analysis of OJIP fluorescence induction dynamics curve

    术语和公式 定义
    FO 暗适应后20 μs时的荧光强度
    FK K相处(300 μs)的荧光强度
    FI I相处(2 ms)的荧光强度
    FJ J相处(30 ms)的荧光强度
    FP 最大荧光处(P相)的荧光强度
    Fm=FP 暗适应后的最大荧光强度
    Fv=Fm-FO t时刻的可变荧光强度
    Vt=(Ft-FO)/(Fm-FO) t时刻的相对可变荧光强度
    VI=(FI-FO)/(Fm-FO) I相的相对可变荧光强度
    VJ=(FJ-FO)/(Fm-FO) J相的相对可变荧光强度
    MO=4×(FK-FO)/(Fm-FO) OJIP荧光诱导曲线的初始斜率
    φP=1-(FO/Fm) PSⅡ最大光化学效率
    φE=(1-(FO/Fm))×ψO 用于电子传递的量子产额
    ψO=(1-VJ) 将电子传递到初级醌受体以后其他电子受体的概率
    Fa=Fv/Fm 暗适应下PSⅡ的最大量子产额
    AcFO 单位面积吸收的光能
    Rm=φP×(VJ/MOAc 单位面积有活性的反应中心数量
    Tr=φP×Ac 单位面积捕获的光能
    Et=φE×Ac 单位面积用于电子传递的能量
    Dd=Ac-Tr 单位面积的热耗散
    下载: 导出CSV
  • [1] 黄宏文. 猕猴桃驯化改良百年启示及天然居群遗传渐渗的基因发掘. 植物学报, 2009, 44(2): 127-142. doi:  10.3969/j.issn.1674-3466.2009.02.001

    Huang H W. History of 100 years of domestication and improvement of kiwifruit and gene discovery from genetic introgressed populations in the wild. Chinese Bulletin of Botany, 2009, 44(2): 127-142. doi:  10.3969/j.issn.1674-3466.2009.02.001
    [2] 王钊, 罗慧, 李亚丽, 等. 近50年秦岭南北不均匀增温及对城市化响应. 应用气象学报, 2016, 27(1): 85-94. doi:  10.11898/1001-7313.20160109

    Wang Z, Luo H, Li Y L, et al. Effects of urbanization on temperatures over the Qinling Mountains in the past 50 years. Journal of Applied Meteorological Science, 2016, 27(1): 85-94. doi:  10.11898/1001-7313.20160109
    [3] 陈峪, 任国玉, 王凌, 等. 近56年我国暖冬气候事件变化. 应用气象学报, 2009, 20(5): 539-545. doi:  10.3969/j.issn.1001-7313.2009.05.004

    Chen Y, Ren G Y, Wang L, et al. Temporal change of warm winter events over the last 56 years in China. Journal of Applied Meteorological Science, 2009, 20(5): 539-545. doi:  10.3969/j.issn.1001-7313.2009.05.004
    [4] 赵平, 南素兰. 气候和气候变化领域的研究进展. 应用气象学报, 2006, 17(6): 725-735. doi:  10.3969/j.issn.1001-7313.2006.06.010

    Zhao P, Nan S L. Some advances in climate and climate change research. Journal of Applied Meteorological Science, 2006, 17(6): 725-735. doi:  10.3969/j.issn.1001-7313.2006.06.010
    [5] 李星敏, 柏秦凤, 朱琳. 气候变化对陕西苹果生长适宜性影响. 应用气象学报, 2011, 22(2): 241-248. doi:  10.3969/j.issn.1001-7313.2011.02.013

    Li X M, Bai Q F, Zhu L. The Influence of climate change on suitability of Shaanxi apple growth. Journal of Applied Meteorological Science, 2011, 22(2): 241-248. doi:  10.3969/j.issn.1001-7313.2011.02.013
    [6] 吕岩, 郭勇社. 猕猴桃散射光日灼发生成因浅析. 西北园艺, 1999(3): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XBYY199903017.htm

    Lü Y, Guo Y S. Analysis on the cause of kiwifruit sunburn caused by scattered light. Northwest Horticulture, 1999(3): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XBYY199903017.htm
    [7] 施春晖, 王晓庆, 骆军. 高温下猕猴桃抗氧化生理响应及日灼伤害阈值温度. 上海农业学报, 2017, 33(4): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB201704019.htm

    Shi C H, Wang X Q, Luo J. Antioxidant physiological response and threshold temperature of sunburn injury in kiwifruit at high temperature. Acta Agriculturae Shanghai, 2017, 33(4): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB201704019.htm
    [8] 李学宏, 潘晓红, 李夏. 高温干旱对猕猴桃生长发育的影响及应对措施. 西北园艺, 2017(5): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XBYY201703015.htm

    Li X H, Pan X H, Li X. Effects of high temperature and drought on growth and development of kiwifruit and countermeasures. Northwest Horticulture, 2017(5): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XBYY201703015.htm
    [9] Toth Z Z, Schansker G, Gara G, et al. Photosynthetic electron transport activity in heat-treated barley leaves: The role of internal alternative electron donors to photosystemⅡ. Biochimica et Biophysica Acta, 2007, 767(4): 295-305. http://www.sciencedirect.com/science/article/pii/S0005272807000515
    [10] Jiang C D, Gao H Y, Zou Q. Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradince in field. Environmental and Experimental Botany, 2006, 55: 87-96. doi:  10.1016/j.envexpbot.2004.10.003
    [11] van Heerden P D R, Swanepoel J W, Krüger G H J. Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environmental and Experimental Botany, 2007, 61(2): 124-136. doi:  10.1016/j.envexpbot.2007.05.005
    [12] Georgieva K, Tsonev T, Velikova V, et al. Photosynthetic activity during high temperature of pea plants. Journal of Plant Physiology, 2000, 157(2): 169-176. doi:  10.1016/S0176-1617(00)80187-X
    [13] 王振兴, 艾军, 陈丽, 等. 软枣猕猴桃叶片光系统Ⅱ活性对不同温度的响应. 西北植物学报, 2015, 35(2): 329-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX201502019.htm

    Wang Z X, Ai J, Chen L, et al. Activity of photosystemsⅡin leaves of actinidia arguta under different temperature treatments. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(2): 329-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX201502019.htm
    [14] 钟敏, 张文标, 邹梁峰, 等. 高温下猕猴桃光合作用和叶绿素荧光特性的日变化. 江西农业大学学报, 2018, 40(3): 472-478. https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201803006.htm

    Zhong M, Zhang W B, Zou L F, et al. Diurnal variation of photosynthesis and chlorophyll fluorescence characteristics in kiwifruit under high temperature condition. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(3): 472-478. https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201803006.htm
    [15] 杜国栋, 吕德国, 赵玲, 等. 高温对仁用杏光合特性及PSⅡ光化学活性的影响. 应用生态学报, 2011, 22(3): 701-706. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201103021.htm

    Du G D, Lü D G, Zhao L, et al. Effects of high temperature on leaf photosynthetic characteristics and photosystemⅡ photochemical activity of kernel-used apricot. Chinese Journal of Applied Ecology, 2011, 22(3): 701-706. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201103021.htm
    [16] 陈家今, 李丽纯, 林晶, 等. 福建省枇杷气象灾害综合风险评估. 应用气象学报, 2014, 25(2): 232-241. doi:  10.3969/j.issn.1001-7313.2014.02.013

    Chen J J, Li L C, Lin J, et al. Integrated risk evaluation on meteorological disasters of loquat in Fujian Province. Journal of Applied Meteorological Science, 2014, 25(2): 232-241. doi:  10.3969/j.issn.1001-7313.2014.02.013
    [17] 杨凯, 陈彬彬, 陈惠, 等. 福建省台湾青枣寒害综合气候指标与等级划分. 应用气象学报, 2020, 31(4): 427-434. doi:  10.11898/1001-7313.20200405

    Yang K, Chen B B, Chen H, et al. Comprehensive climatic index and grade classification of cold damage for Taiwan green jujube in Fujian. Journal of Applied Meteorological Science, 2020, 31(4): 427-434. doi:  10.11898/1001-7313.20200405
    [18] 李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31(6): 559-566. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI200506001.htm

    Li P M, Gao H Y, Strasser R J. Application of chlorophyll fluorescence dynamics to the study of phytobiology. Journal of Plant Physiology and Molecular Biology, 2005, 31(6): 559-566. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI200506001.htm
    [19] Strasser B J. Donor side capacity of photosystemⅡprobed by chlorophyll fluorescence transients. Photosynthesis Research, 1997, 52(2): 147-155. http://jxb.oxfordjournals.org/external-ref?access_num=10.1023/A:1005896029778&link_type=DOI
    [20] Strasser R J, Srivastava A, Tsimilli-Michael M. The Fluorescence Transient as a Tool to Characterise and Screen Photosynthetic Samples. Bristol: Taylor and Francis, 2000: 445-483. http://www.cabdirect.org/abstracts/20003011575.html
    [21] Oukarroum A, Schansker G, Strasser R J. Drought stress effects on photosystem I content and photosystemⅡ thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiologia Plantarum, 2009, 137(2): 188-199.
    [22] 郭建平. 农业气象灾害监测预测技术研究进展. 应用气象学报, 2016, 27(5): 620-630. doi:  10.11898/1001-7313.20160510

    Guo J P. Research progress on agricultural meteorological disaster monitoring and forecasting. Journal of Applied Meteorological Science, 2016, 27(5): 620-630. doi:  10.11898/1001-7313.20160510
    [23] 屈振江, 周广胜, 魏钦平. 苹果花期冻害气象指标和风险评估. 应用气象学报, 2016, 27(4): 385-395. doi:  10.11898/1001-7313.20160401

    Qu Z J, Zhou G S, Wei Q P. Meteorological disaster index and risk assessment of frost injury during apple florescence. Journal of Applied Meteorological Science, 2016, 27(4): 385-395. doi:  10.11898/1001-7313.20160401
    [24] 陆魁东, 黄晚华, 方丽, 等. 气象灾害指标在湖南春玉米种植区划中的应用. 应用气象学报, 2007, 18(4): 548-553. http://qikan.camscma.cn/article/id/20070485

    Lu K D, Huang W H, Fang L, et al. The climatic zoning of spring maize in Hunan based on meteorological disaster indexes. Journal of Applied Meteorological Science, 2007, 18(4): 548-553. http://qikan.camscma.cn/article/id/20070485
    [25] 钟彩虹. 猕猴桃研究进展(Ⅸ). 北京: 科学技术出版社, 2019.

    Zhong C H. Advances in Actinidia Research(Ⅸ). Beijing: Science & Technology Press, 2019.
    [26] 原佳乐, 马超, 冯雅岚, 等. 不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应. 植物生理学报, 2018, 54(6): 1119-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201806021.htm

    Yuan J L, Ma C, Feng Y L, et al. Response of chlorophyll fluorescence transient in leaves of wheats with different drought resistances to drought stresses and rehydration. Plant Physiology Journal, 2018, 54(6): 1119-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201806021.htm
    [27] 陆思宇, 杨再强, 张源达, 等. 高温条件下光周期对鲜切菊花叶片光合系统荧光特性的影响. 中国农业气象, 2020, 41(10): 632-643. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY202010004.htm

    Lu S Y, Yang Z Q, Zhang Y D, et al. Effect of photoperiod on fluorescence characteristics of photosynthetic system of fresh-cut chrysanthemum leaves under high temperature. Chinese Journal of Agrometeorology, 2020, 41(10): 632-643. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY202010004.htm
    [28] 陈彪, 张杰, 马晓寒, 等. 外源硒对干旱胁迫下烤烟叶绿素荧光特性和叶片化学成分的影响. 中国农业科技导报, 2018, 20(10): 95-104. https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201810012.htm

    Chen B, Zhang J, Ma X H, et al. Influences of exogenous selenium on the chlorophyll fluorescence characteristics and chemical composition in flue-cured tobacco under drought stress. Journal of Agricultural Science and Technology, 2018, 20(10): 95-104. https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201810012.htm
    [29] Li P, Cheng L, Gao H, et al. Heterogeneous behavior of PSⅡin soybean(Glycine max) leaves with identical PSⅡ photochemistry efficiency under different high temperature treatments. Journal of Plant Physiology, 2009, 166(15): 1607-1615. http://www.ncbi.nlm.nih.gov/pubmed/19473728
    [30] 金立桥, 车兴凯, 张子山, 等. 高温、强光下黄瓜叶片PSⅡ供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系. 植物生理学报, 2015, 51(6): 969-976. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201506024.htm

    Jin L Q, Che X K, Zhang Z S, et al. The relationship between the changes in Wk and different damage degree of PSⅡ donor side and acceptor side under high temperature with high light in cucumber. Plant Physiology Journal, 2015, 51(6): 969-976. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201506024.htm
    [31] 陈贻竹, 李晓萍, 夏丽, 等. 叶绿素荧光技术在植物环境胁迫研究中的应用. 热带亚热带植物学报, 1995, 3(4): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-RYZB504.013.htm

    Chen Y Z, Li X P, Xia L, et al. The application of chlorophyll fluorescence technique in the study of responses of plants to environmental stresses. Journal of Tropical and Subtropical Botany, 1995, 3(4): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-RYZB504.013.htm
    [32] Bilger H W, Schreiber U, Lange O L. Determination of leafheat resistance: Comparative investigation of chlorophyll fluorescence changes and tissue necrosis methods. Oecologia, 1984, 63(2): 256-262. http://aob.oxfordjournals.org/external-ref?access_num=10.1007/BF00379886&link_type=DOI
    [33] Schreiber U, Berry J A. Heat induced changes in chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta, 1977, 136: 233-238. http://jxb.oxfordjournals.org/external-ref?access_num=10.1007/BF00385990&link_type=DOI
    [34] Seemann J R, Downton W J, Berry J A. Temperature and leaf osmotic potential as factors in the acclimation of photosynthesis to high temperature in desert plants. Plant Physiology, 1986, 80: 926-930. http://europepmc.org/abstract/MED/16664743
    [35] 冯建灿, 胡秀丽, 毛训甲, 等. 叶绿素荧光动力学在研究植物逆境生理中的应用. 经济林研究, 2002, 20(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYJ200204003.htm

    Feng J C, Hu X L, Mao X J, et al. Application of chlorophyll fluorescence dynamics to plant physiology in adverse circumstance. Economic Forest Researche, 2002, 20(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYJ200204003.htm
    [36] 李晓, 冯伟, 曾晓春. 叶绿素荧光分析技术及应用进展. 西北植物学报, 2006, 26(10): 2186-2196. https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX200610036.htm

    Li X, Feng W, Zeng X C. Advances in chlorophyll fluorescence analysis and its uses. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(10): 2186-2196. https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX200610036.htm
    [37] Yamane Y, Kashino Y, Koike H, et al. Increases in the fluorescence level and Fo level and reversible inhibition of photosystem Ⅱreaction center by high-temperature treatment in higher plants. Photosynthesis Research, 1997, 52: 57-64. http://www.springerlink.com/content/u135n77w43623766/
    [38] Srivastava A, Strasser R.J. Stress and stress management of land plants during a regular day. Journal of Plant Physiology, 1996, 148: 445-455.
    [39] Yamane Y, Kashino Y, Koike H. Effects of high temperatures on the photosynthetic systems in spinach: Oxygen evolving activities, fluorescence characteristics and the denaturation process. Photosynthesis Res, 1998, 57: 51-59. doi:  10.1023/A:1006019102619
    [40] 王梅, 高志奎, 黄瑞虹, 等. 茄子光系统Ⅱ热胁迫特性. 应用生态学报, 2007, 18(1): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200701010.htm

    Wang M, Gao Z K, Huang R H, et al. Heat stress characteristics of photosystemⅡin eggplant. Chinese Journal of Applied Ecology, 2007, 18(1): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200701010.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  27
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-06-09
  • 刊出日期:  2021-07-31

目录

    /

    返回文章
    返回