留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涝渍对夏花生光合特性及产量影响

马青荣 左璇 胡程达 成林 李彤霄

马青荣, 左璇, 胡程达, 等. 涝渍对夏花生光合特性及产量影响. 应用气象学报, 2021, 32(4): 479-490. DOI:  10.11898/1001-7313.20210409..
引用本文: 马青荣, 左璇, 胡程达, 等. 涝渍对夏花生光合特性及产量影响. 应用气象学报, 2021, 32(4): 479-490. DOI:  10.11898/1001-7313.20210409.
Ma Qingrong, Zuo Xuan, Hu Chengda, et al. Effects of waterlogging on photosynthetic characteristics and yield of summer peanut. J Appl Meteor Sci, 2021, 32(4): 479-490. DOI:  10.11898/1001-7313.20210409.
Citation: Ma Qingrong, Zuo Xuan, Hu Chengda, et al. Effects of waterlogging on photosynthetic characteristics and yield of summer peanut. J Appl Meteor Sci, 2021, 32(4): 479-490. DOI:  10.11898/1001-7313.20210409.

涝渍对夏花生光合特性及产量影响

DOI: 10.11898/1001-7313.20210409
资助项目: 

国家重点研发计划 2019YFD1002204

中国气象局农业气象保障与应用技术重点实验室开放基金 AMF201801

中国气象局农业气象保障与应用技术重点实验室开放基金 AMF202107

详细信息
    通信作者:

    马青荣, 邮箱: zzmqr@163.com

Effects of Waterlogging on Photosynthetic Characteristics and Yield of Summer Peanut

  • 摘要: 夏花生常因汛期雨水偏多形成涝渍灾害而减产,探索不同耕作方式下涝渍持续日数对花生光合特性及产量的影响,可为花生涝渍动态监测评估和农业防灾减灾提供参考。选择2019年、2020年每年6—9月,在花生主产区河南驻马店土壤质地为粘土的大田平作、垄作方式下,以豫花22为试验材料,将花生产量形成过程分前期、中期、后期3个时段,分别设计3 d,5 d,7 d,9 d灌水处理。结果表明:相同过程灌水量条件下,垄作比平作涝渍持续日数减少1~5 d,其中淹涝日数偏少3~5 d;3 d灌水处理的涝渍持续日数4~5 d,叶绿素含量和净光合速率等光合参数呈正效应造成茎叶干物质积累增加;各时段涝渍影响均随持续日数的增加而加重,除百仁重涝渍影响表现为中期最大、前期次之、后期最小,其他均为前期最大、中期次之、后期最小;各处理水平涝渍持续日数4~16 d,光合参数影响幅度为1.3%~64.2%,生物量和产量影响幅度为0.6%~44.9%;垄作花生与平作花生相比,因涝渍持续日数减少而使灾害影响减小,前期各处理花生产量减少灾损达3.4%~11.6%。
  • 图  1  不同耕作方式下各时段涝渍处理对生物量的影响

    Fig. 1  Biomass of peanut under waterlogging treatments during each stage for different cultivation pattern

    图  2  不同耕作方式下各时段涝渍处理对产量的影响

    Fig. 2  Effects of different cultivation pattern on yield of peanut under waterlogging treatments during each stage

    表  1  1971—2020年118个站点连续降水日数及对应频次和站次

    Table  1  Number of station-time and frequency of continuous precipitation days at 118 stations from 1971 to 2020

    连续降水日数/d 发生总次数 发生频次/(次·(站·年)-1) 发生站次/(站·(次·年)-1)
    3 6063 1.03 121
    4 3455 0.59 69
    5 2095 0.36 42
    6 1196 0.20 24
    7 696 0.12 14
    8 431 0.07 9
    9 332 0.06 7
    10 171 0.03 3
    11 89 0.02 2
    12 69 0.01 1
    13 26 0 1
    14 14 0 0
    15 18 0 0
    16 5 0 0
    17 4 0 0
    18 3 0 0
    20 1 0 0
    31 1 0 0
    下载: 导出CSV

    表  2  平作淹涝灌水量下不同耕作方式涝渍持续日数

    Table  2  Waterlogging duration under two cultivation patterns with the flooding irrigation amount under flat pattern

    耕作方式 灌水日数/d 淹涝持续日数/d 湿渍持续日数/d 涝渍持续日数/d
    平作 3 4 1 5
    5 7 2 9
    7 9 3 12
    9 12 4 16
    垄作 3 1 3 4
    5 3 4 7
    7 5 4 9
    9 7 4 11
    下载: 导出CSV

    表  3  不同涝渍处理与对照相比叶绿素含量的差异

    Table  3  Comparison in chlorophyll content between different waterlogging treatments and CK

    耕作方式 涝渍处理 叶绿素含量 与对照相比影响百分率/%
    平作 A3 47.2 -4.2
    A5 42.9 5.6
    A7 37.1 15.2
    A9 29.4 30.7
    B3 42.1 -1.1
    B5 39.6 3.5
    B7 35.8 10.0
    B9 31.9 20.6
    C3 36.1 -0.3
    C5 35.0 1.1
    C7 32.5 4.1
    C9 31.4 8.0
    垄作 A3 48.9 -8.7
    A5 44.9 -2.2
    A7 42.3 4.9
    A9 34.8 17.3
    B3 40.7 -4.4
    B5 39.3 -0.1
    B7 35.3 6.3
    B9 33.0 10.6
    下载: 导出CSV

    表  4  不同涝渍处理与对照相比光合参数的差异

    Table  4  Comparison in photosynthetic parameters between different waterlogging treatments and CK

    耕作方式 涝渍处理 光合参数/(μmol·m-2·s-1) 与对照相比影响百分率/%
    净光合速率 胞间CO2浓度 蒸腾速率 净光合速率 胞间CO2浓度 蒸腾速率
    平作 A3 25.0 281 6.8 -3.9 3.1 1.3
    A5 24.6 243 6.2 5.6 17.9 9.5
    A7 20.2 209 5.2 15.2 26.4 23.6
    A9 17.6 16 4.8 30.7 43.1 29.0
    B3 21.5 263 6.0 3.6 6.1 4.8
    B5 23.4 183 5.8 3.5 30.9 9.2
    B7 23.1 165 4.8 10.0 39.8 19.8
    B9 18.6 105 4.2 20.6 64.2 28.0
    C3 21.6 235 5.2 -0.3 12.0 12.3
    C5 22.4 230 5.0 1.1 19.3 11.6
    C7 16.0 182 4.3 26.5 33.3 24.8
    C9 18.1 158 3.8 8.0 37.8 32.6
    垄作 A3 25.6 279 6.9 -4.7 1.8 -0.4
    A5 26.0 265 6.3 1.2 9.6 8.4
    A7 22.0 231 5.9 11.9 18.9 12.7
    A9 18.2 185 5.4 21.8 31.5 19.1
    B3 22.0 263 6.2 -1.6 4.0 3.3
    B5 23.1 235 6.0 3.1 19.8 6.4
    B7 21.0 196 4.7 6.3 31.2 22.8
    B9 20.7 265 4.1 10.6 29.4 31.5
    下载: 导出CSV

    表  5  花生产量形成时期不同时段涝渍处理对产量及构成因素的影响

    Table  5  Effects of waterlogging treatments on yield and yield components in different stages

    耕作方式 涝渍处理 百果重/g 百仁重/g 饱果率/% 荚果产量/(kg·hm-2)
    平作 CK 182.4±4.1 80.6±8.0 78.0±6.1 5689.7±465.2
    A3 175.6±7.5 75.9±4.3 74.2±5.3 5424.4±161.3
    A5 160.8±5.3* 69.4±3.2* 69.5±4.1* 5032.3±137.2*
    A7 141.5±3.6** 59.1±6.1** 62.1±6.2** 4556.0±301.2**
    A9 132.8±9.2** 57.3±9.8** 58.6±2.8** 4075.2±423.3**
    B3 180.6±3.1 76.5±0.9* 75.6±6.1 5502.8±305.5
    B5 173.1±2.2* 68.5±4.4* 72.3±8.9* 5343.3±184.5
    B7 161.0±4.5* 57.2±1.1** 68.9±4.2* 5028.0±271.3*
    B9 149.8±3.1** 54.9±3.7** 63.1±5.6** 4590.4±423.4**
    C3 183.2±4.8 80.8±1.1 76.8±3.1 5567.2±401.0
    C5 177.8±1.4 78.1±2.1 74.7±2.2 5408.5±127.1
    C7 172.9±0.5* 75.5±4.6* 72.5±2.3* 5355.2±278.4*
    C9 163.6±9.8** 71.9±4.9** 70.1±4.5* 5283.2±366.9*
    垄作 CK 183.6±9.2 81.3±5.1 78.8±2.9 5763.0±334.7
    A3 186.4±8.4 82.3±4.8 76.2±5.8 5744.7±421.6
    A5 175.1±11.5 76.1±6.2* 73.5±6.1* 5346.4±206.8*
    A7 161.6±15.3* 70.0±2.8** 71.3±2.8** 5063.4±89.8**
    A9 151.3±7.3** 65.7±5.2** 69.1±3.6** 4797.6±341.7**
    B3 184.1±5.5 82.0±3.9 77.0±4.2 5643.3±298.3
    B5 180.1±13.9 78.8±4.9* 74.5±4.7 5482.9±174.3*
    B7 174.6±11.2* 75.0±6.3* 72.8±6.7* 5264.7±201.1**
    B9 165.3±7.7** 70.8±5.3** 70.7±5.4** 5046.6±398.6**
        注:*和* *分别表示与对照处理CK相比达到0.05和0.01显著性水平。
    下载: 导出CSV
  • [1] Fukao T, Barrera-Figueroa B E, Juntawong P, et al. Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects. Front Plant Sci, 2019, 10, 340. DOI: 10.3389/fpls.2019.00340.
    [2] 陈丽娟, 赵俊虎, 顾薇, 等. 汛期我国主要雨季进程成因及预测应用进展. 应用气象学报, 2019, 30(4): 385-400. doi:  10.11898/1001-7313.20190401

    Chen L J, Zhao J H, Gu W, et al. Advances of research and application on major rainy seasons in China. J Appl Meteor Sci, 2019, 30(4): 385-400. doi:  10.11898/1001-7313.20190401
    [3] Ploschuk R A, Miralles D J, Colmer T D, et al. Waterlogging of winter crops at early and late stages: Impacts on leaf physiology, growth and yield. Front Plant Sci, 2018, 9: 1863. doi:  10.3389/fpls.2018.01863
    [4] 霍治国, 范雨娴, 杨建莹, 等. 中国农业洪涝灾害研究进展. 应用气象学报, 2017, 28(6): 641-653. doi:  10.11898/1001-7313.20170601

    Huo Z G, Fan Y X, Yang J Y, et al. Review on agricultural flood disaster in China. J Appl Meteor Sci, 2017, 28(6): 641-653. doi:  10.11898/1001-7313.20170601
    [5] 马青荣, 邹春辉, 胡程达, 等. 荚果期淹水胁迫对花生产量及品质的影响. 湖北农业科学, 2020, 59(9): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY202009008.htm

    Ma Q R, Zou C H, Hu C D, et al. The influence of waterlogging stress on yield and quality at different pod stage of peanut. Hubei Agricultural Sciences, 2020, 59(9): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY202009008.htm
    [6] Arduini I, Baldanzi M, Pampana S. Reduced growth and nitrogen uptake during waterlogging at tillering permanently affect yield components in late sown oats. Front Plant Sci, 2019, 10: 1087. doi:  10.3389/fpls.2019.01087
    [7] 田俊, 霍治国, 刘丹, 等. 江西省早稻雨洗花灾害时空变化及分区. 应用气象学报, 2019, 30(5): 608-618. doi:  10.11898/1001-7313.20190509

    Tian J, Huo Z G, Liu D, et al. Spatial-temporal variation and zoning of rain-washing damage to early rice pollen in Jiangxi Province. J Appl Meteor Sci, 2019, 30(5): 608-618. doi:  10.11898/1001-7313.20190509
    [8] Zhang Y, Song X, Yang G, et al. Physiological and molecular adjustment of cotton to waterlogging at peak-flowering in relation to growth and yield. Field Crops Res, 2015, 179: 164-172. doi:  10.1016/j.fcr.2015.05.001
    [9] Ahmed S, Nawata E, Hosokawa M, et al. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci, 2002, 163: 117-123. doi:  10.1016/S0168-9452(02)00080-8
    [10] Ahmed S, Nawata E, Sakuratani T. Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean(Vigna radiata (L. ) Wilczak cv. KPS1) during waterlogging. Environ Exp Bot, 2006, 57: 278-284. doi:  10.1016/j.envexpbot.2005.06.006
    [11] 向永玲, 方正武, 赵记伍, 等. 灌浆期涝渍害对弱筋小麦籽粒产量及品质的影响. 麦类作物学报, 2020, 40(6): 730-736. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW202006012.htm

    Xiang Y L, Fang Z W, Zhao J W, et al. Effect of waterlogging at grain filling stage on grain yield and quality of weak gluten wheat. Journal of Triticeae Crops, 2020, 40(6): 730-736. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW202006012.htm
    [12] de San Celedonio R P, Abeledo L G, Miralles D J. Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil, 2014, 378: 265-277. doi:  10.1007/s11104-014-2028-6
    [13] Wollmer A C, Pitann B, Mühling K H. Waterlogging events during stem elongation or flowering affect yield of oilseed rape (Brassica napus L. ) but not seed quality. J Agron Crop Sci, 2018, 204: 165-174. doi:  10.1111/jac.12244
    [14] 余卫东, 冯利平, 盛绍学, 等. 黄淮地区涝渍胁迫影响夏玉米生长及产量. 农业工程学报, 2014, 30(13): 127-136. doi:  10.3969/j.issn.1002-6819.2014.13.016

    Yu W D, Feng L P, Sheng S X, et al. Effect of waterlogging at jointing and tasseling stages on growth and yield of summer maize. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 127-136. doi:  10.3969/j.issn.1002-6819.2014.13.016
    [15] 邓丽娜, 梁涛, 张子学, 等. 苗期涝害对夏玉米叶片光合特性的影响. 安徽科技学院学报, 2015, 29(6): 41-46. doi:  10.3969/j.issn.1673-8772.2015.06.008

    Deng L N, Liang T, Zhang Z X, et al. Effects of waterlogging on photosynthetic characteristics of maize leaves at seedling stage. Journal of Anhui Science and Technology University, 2015, 29(6): 41-46. doi:  10.3969/j.issn.1673-8772.2015.06.008
    [16] Tian L, Li J, Bi W, et al. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize(Zea mays L. ) under field conditions. Agric Water Manag, 2019, 218: 250-258. doi:  10.1016/j.agwat.2019.03.054
    [17] 易静, 刘登望, 王建国, 等. 湿涝对花生干物质积累与分配的影响. 花生学报, 2017, 46(3): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-PEAN201703007.htm

    Yi J, Liu D W, Wang J G. Effects of waterlogging on dry matter accumulation and distribution in peanut. Journal of Peanut Science, 2017, 46(3): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-PEAN201703007.htm
    [18] 张凤, 王媛媛, 张佳蕾, 等. 不同生育时期淹水对花生生理性状及产量、品质的影响. 花生学报, 2012, 41(2): 1-7. doi:  10.3969/j.issn.1002-4093.2012.02.001

    Zhang F, Wang Y Y, Zhang J L, et al. Effects of water-logging at different growing periods on physiological characteristics, pod yield and kernel quality of Peanut. Journal of Peanut Science, 2012, 41(2): 1-7. doi:  10.3969/j.issn.1002-4093.2012.02.001
    [19] 曹铁华, 梁烜赫, 张磊, 等. 开花后水分胁迫对花生产量形成过程的影响. 吉林农业大学学报, 2011, 33(1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201101003.htm

    Cao T H, Liang X H, Zhang L, et al. Effects of water stress on peanut yield formation process after flowering. Journal of Jilin Agricultural University, 2011, 33(1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201101003.htm
    [20] 刘登望, 李林. 湿涝对幼苗期花生根系ADH活性与生长发育的影响及相互关系. 花生学报, 2007, 36(4): 12-17. doi:  10.3969/j.issn.1002-4093.2007.04.003

    Liu D W, Li L. The response of alcohol dehydroganase activity & development of peanut roots to waterlogging & their relationships. Journal of Peanut Science, 2007, 36(4): 12-17. doi:  10.3969/j.issn.1002-4093.2007.04.003
    [21] 赵伟, 李林, 戈蕾, 等. 不同花生品种幼苗期耐涝性差异分析. 贵州农业科学, 2009, 37(12): 84-86. doi:  10.3969/j.issn.1001-3601.2009.12.025

    Zhao W, Li L, Ge L, et al. Analysis on difference of waterlogging tolerance of different peanut varieties at seedling stage. Guizhou Agricultural Sciences, 2009, 37(12): 84-86. doi:  10.3969/j.issn.1001-3601.2009.12.025
    [22] 张俊, 刘娟, 臧秀旺, 等. 不同生育时期水分胁迫对花生生长发育和产量的影响. 中国农学通报, 2015, 31(24): 93-98. doi:  10.11924/j.issn.1000-6850.casb15020067

    Zhang J, Liu J, Zang X W, et al. Effects of drought stress on yield and growth and development at different growth stages of peanut. Chinese Agricultural Sciene Bulletin, 2015, 31(24): 93-98. doi:  10.11924/j.issn.1000-6850.casb15020067
    [23] 臧秀旺, 汤丰收, 张俊, 等. 生育后期湿涝胁迫对不同种植方式花生产量性状及品质的影响. 花生学报, 2014, 43(4): 13-18. doi:  10.3969/j.issn.1002-4093.2014.04.002

    Zang X W, Tang F S, Zhang J, et al. Effect of waterlogging stress on peanut yield and quality with different planting patterns. Journal of Peanut Science, 2014, 43(4): 13-18. doi:  10.3969/j.issn.1002-4093.2014.04.002
    [24] 王建林. 现代农业气象业务. 北京: 气象出版社, 2010.

    Wang J L. Modern Agrometeorological Service. Beijing: China Meteorological Press, 2010.
    [25] 郭建平. 农业气象灾害监测预测技木研究进展. 应用气象学报, 2016, 27(5): 620-630. doi:  10.11898/1001-7313.20160510

    Guo J P. Research progress on agricultural meteorological disaster monitoring and forecasting. J Appl Meteor Sci, 2016, 27(5): 620-630. doi:  10.11898/1001-7313.20160510
    [26] 郁凌华, 赵艳霞. 黄淮海地区夏玉米生长季内的旱涝灾害分析. 灾害学, 2013, 28(2): 71-75. doi:  10.3969/j.issn.1000-811X.2013.02.015

    Yu L H, Zhao Y X. Analysis of drought-flood disaster on Huanghuaihai region during summer maize growing season. Journal of Catastrophology, 2013, 28(2): 71-75. doi:  10.3969/j.issn.1000-811X.2013.02.015
    [27] 王培娟, 马玉平, 霍治国, 等. 土壤水分对冬小麦叶片光合速率影响模型构建. 应用气象学报, 2020, 31(3): 267-279. doi:  10.11898/1001-7313.20200302

    Wang P J, Ma Y P, Huo Z G, et al. Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat. J Appl Meteor Sci, 2020, 31(3): 267-279. doi:  10.11898/1001-7313.20200302
    [28] 张凤. 淹水对花生生理特性及产量、品种的影响. 泰安: 山东农业大学, 2012.

    Zhang F. Difference in Water-logging on Physiological Characters, Pod Yield and Seed Quality of Peanut. Taian: Shandong Agricultural University, 2012.
    [29] 张倩, 崔莎莎, 高波, 等. 播期对夏直播花生生理特性及产量的影响. 花生学报, 2015, 44(4): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-PEAN201504004.htm

    Zhang Q, Cui S S, Gao B, et al. Effects of sowing date on physiological characteristics and yield of summer-planting peanut. Journal of Peanut Science, 2015, 44(4): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-PEAN201504004.htm
    [30] 郭建平. 植物对降水截留的研究进展. 应用气象学报, 2020, 31(6): 641-652. doi:  10.11898/1001-7313.20200601

    Guo J P. Research progress of precipitation interception by plants. J Appl Meteor Sci, 2020, 31(6): 641-652. doi:  10.11898/1001-7313.20200601
    [31] Erda L, Wei X, Hui J, et al. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos Trans R Soc B Biol Sci, 2005, 360: 2149-2154. doi:  10.1098/rstb.2005.1743
    [32] 张琳, 吕俊梅, 丁明虎. 2015年初北极极端气旋对中国寒潮的影响. 应用气象学报, 2020, 31(3): 315-327. doi:  10.11898/1001-7313.20200306

    Zhang L, Lü J M, Ding M H. Impact of Arctic extreme cyclones on cold spells in China during early 2015. J Appl Meteor Sci, 2020, 31(3): 315-327. doi:  10.11898/1001-7313.20200306
    [33] Wang Y, Chen Z, Jiang Y, et al. Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L. ). Sci Hortic Amst, 2019, 256: 108596. doi:  10.1016/j.scienta.2019.108596
    [34] 汪天颖, 霍治国, 杨建莹, 等. 湖南晚稻洪涝过程等级指标构建与演变特征. 应用气象学报, 2019, 30(1): 35-48. doi:  10.11898/1001-7313.20190104

    Wang T Y, Huo Z G, Yang J Y, et al. Process grade indicator construction and evolution characteristics of late rice flood in Hunan. J Appl Meteor Sci, 2019, 30(1): 35-48. doi:  10.11898/1001-7313.20190104
    [35] Sultan B, Defrance D, Iizumi T. Evidence of crop production losses in West Africa due to historical global warming in two crop models. Sci Rep, 2019, 9: 12834-12915. doi:  10.1038/s41598-019-49167-0
    [36] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003.

    Wan S B. The Science of Peanut Cultivation in China. Shanghai: Shanghai Science and Technology Publishing House, 2003.
    [37] 郭洪海, 杨丽萍, 李新华, 等. 黄淮海区域花生生产与品质特征的研究. 中国生态农业学报, 2010, 18(6): 1233-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201006017.htm

    Guo H H, Yang L P, Li X H, et al. Situation of production and quality and development countermeasure of peanut in Huang-Huai-Hai Region. Chinese Journal of Eco-Agriculture, 2010, 18(6): 1233-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201006017.htm
    [38] 丁一汇, 李霄, 李巧萍. 气候变暖背景下中国地面风速变化研究进展. 应用气象学报, 2020, 31(1): 1-12. doi:  10.11898/1001-7313.20200101

    Ding Y H, Li X, Li Q P. Advances of surface wind speed changes over China under global warming. J Appl Meteor Sci, 2020, 31(1): 1-12. doi:  10.11898/1001-7313.20200101
    [39] 王寒. 淹水胁迫对玉米幼苗生长的影响及生理响应. 合肥: 安徽农业大学, 2018.

    Wang H. Difference in Water-logging on Growth of Maize Seedling and Physiological Response Mechanisms. Hefei: Anhui Agricultural University, 2018.
    [40] 李林. 花生品种间耐湿涝性差异及其机理研究. 长沙: 湖南农业大学, 2004.

    Li L. Difference in Water-logging Tolerance Among Peanut Varieties and Their Mechanisms. Changsha: Hunan Agricultural University, 2004.
    [41] Bishnoi N R, Krishnamoorthy H N. The effect of water-logging and gibber elicacid on growth and yield of peanut. Indian Journal of Plant Physiology, 1995, 38(1): 45-47.
    [42] 陈祖玉, 彭其安. 不同淹水时期对水稻形态特性与产量的影响. 安徽农学通报, 2010, 16(21): 62-63. doi:  10.3969/j.issn.1007-7731.2010.21.027

    Chen Z Y, Peng Q A. Effect on morphological characteristics and yield of rice during submergence. Anhui Agricultural Science Bulletin, 2010, 16(21): 62-63. doi:  10.3969/j.issn.1007-7731.2010.21.027
    [43] 张俊, 汤丰收, 臧秀旺, 等. 不同种植方式花生生育后期湿涝胁迫对产量及保护性酶系统的影响. 河南农业科学, 2014, 43(12): 46-50. doi:  10.3969/j.issn.1004-3268.2014.12.010

    Zhang J, Tang F S, Zang X W, et al. Effect of waterlogging stress on peanut yield and protective enzyme system in different planting patterns. Journal of Henan Agricultural Sciences, 2014, 43(12): 46-50. doi:  10.3969/j.issn.1004-3268.2014.12.010
    [44] 刘登望, 李林, 邹冬生, 等. 湿涝胁迫对不同种质花生生长和农艺性状的影响. 中国生态农业学报, 2009, 17(5): 968-973. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200905042.htm

    Liu D W, Li L, Zou D S, et al. Effect of water-logging on growth and agronomic trait of different peanut varieties. Chinese Journal of Eco-Agriculture, 2009, 17(5): 968-973. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200905042.htm
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  50
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-06-03
  • 刊出日期:  2021-07-31

目录

    /

    返回文章
    返回