留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BCC-CSM1.1m对欧亚积雪覆盖的预测评估

成菲 李巧萍 沈新勇 柳艳菊 汪靖

成菲, 李巧萍, 沈新勇, 等. BCC-CSM1.1m对欧亚积雪覆盖的预测评估. 应用气象学报, 2021, 32(5): 553-566. DOI:  10.11898/1001-7313.20210504..
引用本文: 成菲, 李巧萍, 沈新勇, 等. BCC-CSM1.1m对欧亚积雪覆盖的预测评估. 应用气象学报, 2021, 32(5): 553-566. DOI:  10.11898/1001-7313.20210504.
Cheng Fei, Li Qiaoping, Shen Xinyong, et al. Evaluation of Eurasian snow cover fraction prediction based on BCC-CSM1.1m. J Appl Meteor Sci, 2021, 32(5): 553-566. DOI:  10.11898/1001-7313.20210504.
Citation: Cheng Fei, Li Qiaoping, Shen Xinyong, et al. Evaluation of Eurasian snow cover fraction prediction based on BCC-CSM1.1m. J Appl Meteor Sci, 2021, 32(5): 553-566. DOI:  10.11898/1001-7313.20210504.

BCC-CSM1.1m对欧亚积雪覆盖的预测评估

DOI: 10.11898/1001-7313.20210504
资助项目: 

国家“第二次青藏高原综合科学考察研究”项目 2019QZKK0102

国家“第二次青藏高原综合科学考察研究”项目 2019QZKK0208

中国科学院战略性先导科技专项 XDA20100304

国家自然科学基金项目 41790471

公益性行业(气象)科研专项 GYHY201406001

详细信息
    通信作者:

    沈新勇, 邮箱: shenxy@nuist.edu.cn

Evaluation of Eurasian Snow Cover Fraction Prediction Based on BCC-CSM1.1m

  • 摘要: 利用基于BCC-CSM1.1m模式建立的第2代季节预测模式系统1984—2019年历史回算数据,客观评估该模式对1月和4月欧亚积雪覆盖率(snow cover fraction,SCF)气候态和年际变化的预测技巧,分析模式预测偏差产生的可能原因。结果表明:BCC-CSM1.1m模式在超前0~2个月对欧亚大陆SCF具有一定预测技巧,对4月SCF的预测能力明显高于1月,1月预测技巧在欧洲西部地区最高,4月在西西伯利亚地区最高。SCF的预测结果在除青藏高原外的大范围地区表现为系统性偏低,预测偏差在1月随着起报时间的增长没有明显变化,而在4月随着起报时间的增长,关键区偏差由负转正并逐渐增大。分析表明,SCF预测偏差与模式中近地面气温的预测偏差有直接关系。除此之外,SCF的预测偏差部分源于模式本身的系统性偏差,模式分辨率以及参数化方案可能是预测结果在积雪覆盖率接近100%的高纬度地区明显偏低的原因。
  • 图  1  1月SCF的观测与预测

    (图中黑色虚线框是定义的冬季关键区)
    (a)观测的气候平均值, (b)观测的标准差, (c)LM0的预测偏差, (d)LM0的标准差, (e)LM2的预测偏差, (f)LM2的标准差

    Fig. 1  Observation and prediction of SCF in Jan

    (the black dashed rectangles represent winter key area(WKA))
    (a)mean SCF for observation, (b)standard deviation for observation, (c)climatological biases for LM0, (d)standard deviation for LM0, (e)climatological biases for LM2, (f)standard deviation for LM2

    图  2  图 1相同,但是为4月

    (黑色虚线框是定义的春季关键区)

    Fig. 2  The same as in Fig. 1, but for Apr

    (the black dashed rectangle represent spring key area(SKA))

    图  3  SCF的TCC预测技巧空间分布

    (黑色打点区域表示相关系数达到0.05显著性水平)
    (a)LM0预测1月, (b)LM0预测4月, (c)LM1预测1月, (d)LM1预测4月, (e)LM2预测1月, (f)LM2预测4月

    Fig. 3  Spatial distribution of temporal correlations between predictions and observation for SCF

    (the black grids denote the areas exceeding 0.05 level(Student's t-test))
    (a)prediction for LM0 in Jan, (b)prediction for LM0 in Apr, (c)prediction for LM1 in Jan, (d)prediction for LM1 in Apr, (e)prediction for LM2 in Jan, (f)prediction for LM2 in Apr

    图  4  关键区观测和预测的SCF距平值以及二者的空间相关系数

    (a)1月距平值, (b)1月空间相关系数, (c)4月距平值, (d)4月空间相关系数

    Fig. 4  Anomalies of observed and forecasted SCF and spatial correlation between them

    (a)anomalies in Jan, (b)spatial correlation in Jan, (c)anomalies in Apr, (d)spatial correlation in Apr

    图  5  观测和模式不同LM时预测的1月SCF的EOF特征向量及其对应的时间系数序列(PC)

    Fig. 5  EOF modes and corresponding principal components(PCs) of observed and forecasted Eurasian SCF for different LM in Jan

    图  6  图 5相同,但为4月

    Fig. 6  The same as in Fig. 5, but for Apr

    图  7  12月—次年5月观测和模式预测的SCF在不同地区的气候平均值

    Fig. 7  Climatological semi-annual(Dec to next May) cycle of SCF for observation and forecasts averaged over eight selected regions

    图  8  SCF的TCC预测技巧区域平均

    (图中上下两条虚线分别表示相关系数达到0.01和0.05显著性水平,区域范围同图 7)

    Fig. 8  Regional averaged TCC skills for SCF forecasts

    (two dashed lines up and down in each panel represents the 0.01 and 0.05 level(Student's t-test),respectively, selected regions are the same as in Fig. 7)

    图  9  LM0时SCF的预测偏差分别与同期降水和气温的预测偏差之间的相关系数

    (黑色实线表示相关系数达到0.05显著性水平)

    Fig. 9  Correlation coefficients between SCF biases and precipitation biases, 2 m temperature biases for LM0,respectively

    (the bold black line is the contour representing 0.05 level(Student's t-test))

    图  10  模式模拟的SCF偏差分布

    (模拟值与观测值之差)(黑色虚线框分别表示冬季关键区和春季关键区)
    (a)BCC-CSM1.1m模拟的1月,(b)BCC-CSM1.1m模拟的4月,(c)BCC-CSM2-MR模拟的1月,(d)BCC-CSM2-MR模拟的4月

    Fig. 10  Spatial distribution of simulated climatology biases of SCF

    (simulation minus observation)(black dashed rectangles in Fig. 10a and Fig. 10c represent WKA while those in Fig. 10b and Fig. 10d represent SKA)
    (a)Jan using BCC-CSM1.1m, (b)Apr using BCC-CSM1.1m, (c)Jan using BCC-CSM2-MR, (d)Apr using BCC-CSM2-MR

  • [1] Blanford H F.On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India. Proc Roy Soc London, 1884, 37:3-22. doi:  10.1098/rspl.1884.0003
    [2] Cohen J. Snow cover and climate. Weather, 1994, 49(5): 150-156. doi:  10.1002/j.1477-8696.1994.tb05997.x
    [3] Essery R. Seasonal snow cover and climate change in the Hadley Centre GCM. Ann Glaciol, 1997, 25: 362-366. doi:  10.3189/S0260305500014282
    [4] Cohen J, Rind D. The effect of snow cover on the climate. J Climate, 1991, 4(7): 689-706. doi:  10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2
    [5] Xia K, Wang B, Li L, et al. Evaluation of snow depth and snow cover fraction simulated by two versions of the flexible global ocean-atmosphere-land system model. Adv Atmos Sci, 2014, 31(2): 407-420. doi:  10.1007/s00376-013-3026-y
    [6] 鲁萌萌, 吴仁广, 杨崧, 等. 欧亚大陆冷季积雪与亚洲夏季风的关系: 区域特征与季节性. 大气科学学报, 2020, 43(1): 93-103. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202001010.htm

    Lu M M, Wu R G, Yang S, et al. Relationship between Eurasian cold-season snows and Asian summer monsoons: Regional characteristics and seasonality. Trans Atmos Sci, 2020, 43(1): 93-103. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202001010.htm
    [7] 张人禾, 张若楠, 左志燕. 中国冬季积雪特征及欧亚大陆积雪对中国气候影响. 应用气象学报, 2016, 27(5): 513-526. doi:  10.11898/1001-7313.20160501

    Zhang R H, Zhang R N, Zuo Z Y. An overview of wintertime snow cover characteristics over China and the impact of Eurasian snow cover on Chinese climate. J Appl Meteor Sci, 2016, 27(5): 513-526. doi:  10.11898/1001-7313.20160501
    [8] 李维京, 张若楠, 孙丞虎, 等. 中国南方旱涝年际年代际变化及成因研究进展. 应用气象学报, 2016, 27(5): 577-591. doi:  10.11898/1001-7313.20160507

    Li W J, Zhang R N, Sun C H, et al. Recent research advances on the interannual-interdecadal variations of drought/flood in South China and associated causes. J Appl Meteor Sci, 2016, 27(5): 577-591. doi:  10.11898/1001-7313.20160507
    [9] Zuo Z, Zhang R, Wu B, et al. Decadal variability in springtime snow over Eurasia: Relation with circulation and possible influence on springtime rainfall over China. Int J Climatol, 2012, 32(9): 1336-1345. doi:  10.1002/joc.2355
    [10] 唐佳, 武炳义. 20世纪90年代初东亚夏季风的年代际转型. 应用气象学报, 2012, 23(4): 402-413. doi:  10.3969/j.issn.1001-7313.2012.04.003

    Tang J, Wu B Y. Inter-decadal shift of East Asian summer monsoon in the early 1990s. J Appl Meteor Sci, 2012, 23(4): 402-413. doi:  10.3969/j.issn.1001-7313.2012.04.003
    [11] 张人禾, 武炳义, 赵平, 等. 中国东部夏季气候20世纪80年代后期的年代际转型及其可能成因. 气象学报, 2008, 66(5): 698-706. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200805004.htm

    Zhang R H, Wu B Y, Zhao P, et al. The decadal shift of the summer climate in eastern China in late 1980s and its possible causes. Acta Meteor Sinica, 2008, 66(5): 698-706. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200805004.htm
    [12] Wu B, Yang K, Zhang R. Eurasian snow cover variability and its association with summer rainfall in China. Adv Atmos Sci, 2009, 26(1): 31-44. doi:  10.1007/s00376-009-0031-2
    [13] 丁一汇, 李怡, 王遵娅, 等. 亚非夏季风的年代际变化大西洋多年代际振荡与太平洋年代际振荡的协同作用. 大气科学学报, 2020, 43(1): 20-32. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202001005.htm

    Ding Y H, Li Y, Wang Z Y, et al. Interdecadal variation of Afro-Asian summer monsoon: Coordinated effects of AMO and PDO oceanic modes. Trans Atmos Sci, 2020, 43(1): 20-32. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202001005.htm
    [14] 陈海山, 孙照勃. 欧亚积雪异常分布对冬季大气环流的影响Ⅰ. 观测研究. 大气科学, 2003, 27(3): 304-316. doi:  10.3878/j.issn.1006-9895.2003.03.02

    Chen H S, Sun Z B. The effects of Eurasian snow cover anomaly on winter atmospheric general circulation Part Ⅰ. Observational studies. Chinese Journal of Atmospheric Sciences, 2003, 27(3): 304-316. doi:  10.3878/j.issn.1006-9895.2003.03.02
    [15] 陈兴芳, 宋文玲. 欧亚和青藏高原冬春季积雪与我国夏季降水关系的分析和预测应用. 高原气象, 2000, 19(2): 216-223. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200002010.htm

    Chen X F, Song W L. Analysis of relationship between snow cover on Eurasia and Tibetan Plateau in winter and summer rainfall in China and application to prediction. Plateau Meteorology, 2000, 19(2): 216-223. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200002010.htm
    [16] 陈兴芳, 宋文玲. 冬季高原积雪和欧亚积雪对我国夏季旱涝不同影响关系的环流特征分析. 大气科学, 2000, 24(5): 586-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200005001.htm

    Chen X F, Song W L. Circulation analysis of different influence of snow cover over the Tibetan Plateau and Eurasia in winter on summertime droughts and floods of China. Chinese Journal of Atmospheric Sciences, 2000, 24(5): 586-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200005001.htm
    [17] Wu R, Kirtman B P. Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J Climate, 2007, 20(7): 1285-1304. doi:  10.1175/JCLI4068.1
    [18] 叶笃正. 长期预报的一些物理因子. 气象, 1975, 1(3): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197503005.htm

    Ye D Z. Some physical factors of long-term forecast. Meteorological Monthly, 1975, 1(3): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197503005.htm
    [19] 李栋梁, 王春学. 积雪分布及其对中国气候影响的研究进展. 大气科学学报, 2011, 34(5): 627-636. doi:  10.3969/j.issn.1674-7097.2011.05.014

    Li D L, Wang C X. Research progress of snow cover and its influence on China climate. Trans Atmos Sci, 2011, 34(5): 627-636. doi:  10.3969/j.issn.1674-7097.2011.05.014
    [20] 祝从文, 刘伯奇, 左志燕, 等. 东亚夏季风次季节变化研究进展. 应用气象学报, 2019, 30(4): 401-415. doi:  10.11898/1001-7313.20190402

    Zhu C W, Liu B Q, Zuo Z Y, et al. Recent advances on sub-seasonal variability of East Asian summer monsoon. J Appl Meteor Sci, 2019, 30(4): 401-415. doi:  10.11898/1001-7313.20190402
    [21] 陈丽娟, 赵俊虎, 顾薇, 等. 汛期我国主要雨季进程成因及预测应用进展. 应用气象学报, 2019, 30(4): 385-400. doi:  10.11898/1001-7313.20190401

    Chen L J, Zhao J H, Gu W, et al. Advances of research and application on major rainy seasons in China. J Appl Meteor Sci, 2019, 30(4): 385-400. doi:  10.11898/1001-7313.20190401
    [22] Peings Y, Douville H. Influence of the Eurasian snow cover on the Indian summer monsoon variability in observed climatologies and CMIP3 simulations. Climate Dyn, 2010, 34(5): 643-660. doi:  10.1007/s00382-009-0565-0
    [23] Saha S K, Pokhrel S, Chaudhari H S. Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 freerun. Climate Dyn, 2013, 41(7/8): 1801-1815. doi:  10.1007/s00382-012-1617-4
    [24] Furtado J C, Cohen J L, Butler A H, et al. Eurasian snow cover variability and links to winter climate in the CMIP5 models. Climate Dyn, 2015, 45(9/10): 2591-2605. doi:  10.1007/s00382-015-2494-4
    [25] Barnett T P, Dümenil L, Schlese U, et al. The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci, 1989, 46(5): 661-686. doi:  10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2
    [26] 吴统文, 宋连春, 李伟平, 等. 北京气候中心气候系统模式研发进展——在气候变化研究中的应用. 气象学报, 2014, 72(1): 13-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201401002.htm

    Wu T W, Song L C, Li W P, et al. An overview on progress in Beijing climate center climate system model-Its development and application to climate change studies. Acta Meteor Sinica, 2014, 72(1): 13-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201401002.htm
    [27] Liu X, Wu T, Yang S, et al. Performance of the seasonal forecasting of the Asian summer monsoon by BCC_CSM1.1(m). Adv Atmos Sci, 2015, 32(8): 1156-1172. doi:  10.1007/s00376-015-4194-8
    [28] 周鑫, 李清泉, 孙秀博, 等. BCC_CSM1.1模式对我国气温的模拟和预估. 应用气象学报, 2014, 25(1): 95-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201401011.htm

    Zhou X, Li Q Q, Sun X B, et al. Simulation and projection of temperature in China with BCC_CSM1.1 model. J Appl Meteor Sci, 2014, 25(1): 95-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201401011.htm
    [29] 唐慧琴, 曾刚, 黄悦. BCC_CSM1.1(m)模式对热带太平洋潜热通量的评估. 应用气象学报, 2016, 27(4): 463-472. doi:  10.11898/1001-7313.20160409

    Tang H Q, Zeng G, Huang Y. An assessment of the tropical pacific latent heat flux simulated by BCC_CSM 1.1(m). J Appl Meteor Sci, 2016, 27(4): 463-472. doi:  10.11898/1001-7313.20160409
    [30] 吴统文, 宋连春, 刘向文, 等. 国家气候中心短期气候预测模式系统业务化进展. 应用气象学报, 2013, 24(5): 533-543. doi:  10.3969/j.issn.1001-7313.2013.05.003

    Wu T W, Song L C, Liu X W, et al. Progress in developing the short-range operational climate prediction system of China national climate center. J Appl Meteor Sci, 2013, 24(5): 533-543. doi:  10.3969/j.issn.1001-7313.2013.05.003
    [31] 吴捷, 任宏利, 张帅, 等. BCC二代气候系统模式的季节预测评估和可预报性分析. 大气科学, 2017, 41(6): 1300-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201706013.htm

    Wu J, Ren H L, Zhang S, et al. Evaluation and predictability analysis of seasonal prediction by BCC second-generation climate system model. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1300-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201706013.htm
    [32] 张丹琦, 孙凤华, 张耀存. 基于BCC第二代短期气候预测模式系统的中国夏季降水季节预测评估. 高原气象, 2019, 38(6): 1229-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201906010.htm

    Zhang D Q, Sun F H, Zhang Y C. Evaluation of seasonal prediction for summer rainfall in China based on BCC second-generation short-range climate forecast systerm. Plateau Meteorology, 2019, 38(6): 1229-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201906010.htm
    [33] He Q, Zuo Z, Zhang R, et al. Prediction skill and predictability of Eurasian snow cover fraction in the NCEP climate forecast system version 2 reforecasts. Int J Climatol, 2016, 36(12): 4071-4084. doi:  10.1002/joc.4618
    [34] 宋敏红, 吴统文, 张宇, 等. 近30年BCC-CSM(m)模拟高原积雪状况评估及其对夏季降水的影响. 高原气象, 2020, 39(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202001002.htm

    Song M H, Wu T W, Zhang Y, et al. Evaluation on simulated snow depth over Qinghai-Tibetan Plateau with BCC-CSM(m) model during recent 30 years and its impact on precipitation in summer. Plateau Meteorology, 2020, 39(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202001002.htm
    [35] 汪芋君, 任宏利, 王琳. 第三极地区气温和积雪的季节-年际气候预测研究. 地球科学进展, 2021, 36(2): 198-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202102008.htm

    Wang Y J, Ren H L, Wang L. Study of seasonal-interannual climate predictions of temperature and snow depth over the third pole. Adv Earth Sci, 2021, 36(2): 198-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202102008.htm
    [36] Bamzai A S, Shukla J. Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: An observational study. J Climate, 1999, 12(10): 3117-3132. doi:  10.1175/1520-0442(1999)012<3117:RBESCS>2.0.CO;2
    [37] 郭渠, 刘向文, 吴统文, 等. 基于BCC_CSM模式的中国东部夏季降水预测检验及订正. 大气科学, 2017, 41(1): 71-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201701006.htm

    Guo Q, Liu X W, Wu T W, et al. Verification and correction of East China summer rainfall prediction based on BCC_CSM. Chinese Journal of Atmospheric Sciences, 2017, 41(1): 71-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201701006.htm
    [38] Wu T, Lu Y, Fang Y, et al. The Beijing climate center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci Model Dev, 2019, 12(4): 1573-1600. doi:  10.5194/gmd-12-1573-2019
    [39] 李演达, 吴统文, 刘向文, 等. 初值对中国东部初夏土壤湿度可预报性影响. 应用气象学报, 2018, 29(4): 423-435. doi:  10.11898/1001-7313.20180404

    Li Y D, Wu T W, Liu X W, et al. The impact of initial conditions on soil moisture predictability in early summer in Eastern China. J Appl Meteor Sci, 2018, 29(4): 423-435. doi:  10.11898/1001-7313.20180404
  • 加载中
图(10)
计量
  • 摘要浏览量:  2161
  • HTML全文浏览量:  350
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-25
  • 修回日期:  2021-05-27
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回