留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云南省积层混合云微物理特征飞机观测

刘春文 郭学良 段玮 丁冲 张凡

刘春文, 郭学良, 段玮, 等. 云南省积层混合云微物理特征飞机观测. 应用气象学报, 2022, 33(2): 142-154. DOI:  10.11898/1001-7313.20220202..
引用本文: 刘春文, 郭学良, 段玮, 等. 云南省积层混合云微物理特征飞机观测. 应用气象学报, 2022, 33(2): 142-154. DOI:  10.11898/1001-7313.20220202.
Liu Chunwen, Guo Xueliang, Duan Wei, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. DOI:  10.11898/1001-7313.20220202.
Citation: Liu Chunwen, Guo Xueliang, Duan Wei, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. DOI:  10.11898/1001-7313.20220202.

云南省积层混合云微物理特征飞机观测

DOI: 10.11898/1001-7313.20220202
资助项目: 

国家重大科学仪器设备开发专项 2011YQ110059

第二次青藏高原综合科学考察研究 2019QZKK0104

国家自然科学基金项目 41930972

详细信息
    通信作者:

    郭学良, 邮箱: guoxl@mail.iap.ac.cn

Observation and Analysis of Microphysical Characteristics of Stratiform Clouds with Embedded Convections in Yunnan

  • 摘要: 2017—2020年利用运-12和空中国王-E350飞机搭载的国产云粒子测量设备在云南开展了76架次积层混合云观测, 数据分析表明:云南的云粒子数浓度远高于华北地区, 云粒子(直径为2~50 μm)数浓度平均值为339.7 cm-3, 最大值为1067.6 cm-3, 平均含水量为0.181 g·m-3, 最大值为2.827 g·m-3, 有效直径平均值为11.2 μm, 最大值为34.6 μm。云粒子谱呈负指数双峰分布, 主、次峰值分别出现在4 μm和10 μm处。云粒子数浓度、含水量和消光系数随高度呈明显分层特征, 有效直径随高度变化不明显, 反射率因子在3.4 km高度最大。暖云区200~1500 μm范围的雨滴粒子平均含水量为0.183 g·m-3, 最大值为4.247 g·m-3, 200~6000 μm范围的雨粒子平均含水量为0.406 g·m-3, 最大值为8.917 g·m-3。不同含水量条件下的云粒子谱宽不同, 随着云中含水量增加, 云粒子谱变宽。西南夏季风爆发后, 暖云区的小云粒子增多, 大云粒子减少, 开展暖云区人工增雨作业有利于提高人工增雨效率。
  • 图  1  2017—2020年云南飞行架次统计

    Fig. 1  Number of flights in Yunnan from 2017 to 2020

    图  2  2017—2020年CIP和PIP探测的粒子谱分布

    Fig. 2  Size distributions of cloud particles detected by CIP and PIP from 2017 to 2020

    图  3  云粒子谱仪CDP探测的总体平均和不同云含水量下云粒子数浓度的谱分布

    Fig. 3  Size distributions of averaged cloud particles detected by CDP under different water contents

    图  4  2017—2020年CDP探测云粒子数浓度、含水量和粒子有效直径平均量随高度分布

    Fig. 4  Vertical distributions of number concentration, water content and average effective diameter of the cloud particle detected by CDP from 2017 to 2020

    图  5  2017—2020年CDP探测的雷达反射率因子和云消光系数的平均值随高度分布

    Fig. 5  Vertical distributions of mean radar reflectivity factor and extinction coefficient of the cloud particle detected by CDP from 2017 to 2020

    图  6  2017—2020年4—7月云粒子含水量在0.05~0.5 g·m-3的粒子有效直径分布的百分比

    Fig. 6  Percentage diagram of effective particle diameter distribution for cloud particle water content between 0.05 g·m-3 and 0.5 g·m-3 during Apr-Jul from 2017 to 2020

    图  7  2017—2020年4—6月CIP和PIP探测的月平均粒子数浓度分布

    Fig. 7  Size distributions of cloud particles detected by CIP and PIP during Apr-Jun from 2017 to 2020

    表  1  2017—2020年云粒子宏微观统计特征

    Table  1  Statistical characteristics of cloud from 2017 to 2020

    云类 统计量 平均值 标准差 最小值 最大值
    所有云 含水量/(g·m-3) 0.181 0.238 0.001 2.827
    数浓度/cm-3 339.7 221.0 4.7 1067.6
    有效直径/μm 11.2 4.6 4.2 34.6
    云中观测高度/m 4413 1034 1246 6946
    零度层高度/m 4695 546 3693 5791
    暖区云 含水量/(g·m-3) 0.200 0.248 0.001 2.827
    数浓度/cm-3 354.1 225.4 4.7 1067.6
    有效直径(μm) 11.8 4.7 4.2 34.6
    云中观测高度(m) 4225 961 1246 5793
    冷区云 含水量/(g·m-3) 0.069 0.113 0.001 1.860
    数浓度/cm-3 253.6 168.7 7.7 706.1
    有效直径/μm 8.0 2.3 4.2 24.1
    云中观测高度/m 5541 670 3693 6946
    下载: 导出CSV

    表  2  12架次飞机探测冷云区云粒子的微物理统计特征

    Table  2  Microphysical properties in cold clouds detected by CDP for 12 flights

    日期 样本点数 数浓度/cm-3 含水量/(g·m-3) 有效直径/μm
    平均值 最大值 平均值 最大值 平均值 最大值
    2018-03-17 998 433 704 0.132 0.475 8.8 22.3
    2018-03-23 112 385 669 0.216 0.670 10.3 13.4
    2018-04-19 72 206 389 0.017 0.051 5.5 6.8
    2019-03-20 473 418 647 0.062 0.189 7.1 9.8
    2019-04-21 25 417 624 0.059 0.164 6.4 8.9
    2019-06-01 827 242 427 0.030 0.093 6.6 9.2
    2020-04-22 144 192 330 0.014 0.045 5.4 7.8
    2020-04-24 1915 263 706 0.083 1.276 7.9 18.6
    2020-04-25 1274 182 531 0.030 0.274 7.2 17.5
    2020-04-26 290 104 408 0.015 0.038 7.4 9.0
    2020-05-22 372 340 593 0.193 1.860 11.4 23.5
    2020-05-27 2349 182 530 0.054 0.537 8.5 24.1
    下载: 导出CSV

    表  3  2017—2020年暖云区云降水粒子和降水粒子的特征

    Table  3  Statistics of cloud precipitation particle and precipitation particle in warm cloud from 2017 to 2020

    粒子类型 统计量 平均值 标准差 最小值 最大值
    含水量/(g·m-3) 0.183 0.293 0.001 4.247
    数浓度/cm-3 0.012 0.023 0.001 0.343
    云降水粒子 有效直径/μm 470.3 272.6 100.0 1425.4
    云高/m 3967 859 1201 5496
    云温/℃ 4.5 3.9 0.0 22.4
    含水量/(g·m-3) 0.406 0.857 0.004 8.917
    数浓度/cm-3 0.002 0.001 0.001 0.008
    降水粒子 有效直径/μm 817.5 623.1 200.0 3960.9
    云高/m 3800 1010 1165 5258
    云温/℃ 4.8 4.9 0.0 24.3
    下载: 导出CSV

    表  4  2017—2020年4—7月云粒子微物理量统计

    Table  4  Statistics of cloud particles during Apr-Jul from 2017 to 2020

    物理量 统计量 4月 5月 6月 7月
    探测高度/m 最小值 1577 2164 1245 2188
    最大值 6946 6648 6324 5615
    平均值 355 356 325 325
    数浓度/cm-3 标准差 229 214 212 223
    最大值 884 1067 982 945
    平均值 0.129 0.167 0.182 0.193
    含水量/(g·m-3) 标准差 0.179 0.208 0.254 0.248
    最大值 1.812 2.118 2.574 2.827
    平均值 9.0 9.5 11.0 12.4
    有效直径/μm 标准差 3.1 3.0 4.1 4.3
    最大值 29.6 24.0 34.1 32.6
    下载: 导出CSV
  • [1] 黄美元,沈志来,洪延超.半个世纪的云雾、降水和人工影响天气研究进展.大气科学,2003,27(4):536-551. doi:  10.3878/j.issn.1006-9895.2003.04.08

    Huang M Y, Shen Z L, Hong Y C. Advance of research on cloud and precipitation and weather modification in the latest half century. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 536-551. doi:  10.3878/j.issn.1006-9895.2003.04.08
    [2] 郭学良, 付丹红, 胡朝霞. 云降水物理与人工影响天气研究进展(2008—2012年). 大气科学, 2013, 37(2): 351-363. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201302013.htm

    Guo X L, Fu D H, Hu Z X. Progress in cloud physics, precipitation, and weather modification during 2008-2012. Chinese Journal of Atmospheric Sciences, 2013, 37(2): 351-363. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201302013.htm
    [3] 雷恒池, 洪延超, 赵震, 等. 近年来云降水物理和人工影响天气研究进展. 大气科学, 2008, 32(4): 967-974. doi:  10.3878/j.issn.1006-9895.2008.04.21

    Lei H C, Hong Y C, Zhao Z, et al. Advances in cloud and precipitat ion physics and weather modification in recent years. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 967-974. doi:  10.3878/j.issn.1006-9895.2008.04.21
    [4] 郭学良, 方春刚, 卢广献, 等. 2008—2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601

    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. Journal of Applied Meteorological Science, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [5] 樊志超, 周盛, 汪玲, 等. 湖南秋季积层混合云系飞机人工增雨作业方法. 应用气象学报, 2018, 29(2): 200-216. doi:  10.11898/1001-7313.20180207

    Fan Z C, Zhou S, Wang L, et al. Methods of aircraft-based precipitation enhancement operation for convective-stratiform mixed clouds in autumn in Hunan Province. Journal of Applied Meteorological Science, 2018, 29(2): 200-216. doi:  10.11898/1001-7313.20180207
    [6] Twomey S. The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Sciences, 1977, 34(7): 1149-1152. doi:  10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
    [7] Slingo A. Sensitivity of the Earth's radiation budget to changes in low clouds. Nature, 1990, 343(6253): 49-51. doi:  10.1038/343049a0
    [8] Randall D A, Coakley J A, Fairall C W, et al. Outlook for research on subtropical marine stratiform clouds. Bulletin of the American Meteorological Society, 1984, 65(12): 1290-1301. doi:  10.1175/1520-0477(1984)065<1290:OFROSM>2.0.CO;2
    [9] Nicholls S. The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quarterly Journal of the Royal Meteorological Society, 1984, 110(466): 783-820. doi:  10.1002/qj.49711046603
    [10] Miles N L, Verlinde J, Clothiaux E E. Cloud droplet size distributions in low-level stratiform clouds. Journal of the Atmospheric Sciences, 2000, 57(2): 295-311. doi:  10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2
    [11] 廖捷, 熊安元. 我国飞机观测气象资料概况及质量分析. 应用气象学报, 2010, 21(2): 206-213. doi:  10.3969/j.issn.1001-7313.2010.02.010

    Liao J, Xiong A Y. Introduction and quality analysis of Chinese aircraft meteorological data. Journal of Applied Meteorological Science, 2010, 21(2): 206-213. doi:  10.3969/j.issn.1001-7313.2010.02.010
    [12] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601

    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. Journal of Applied Meteorological Science, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [13] 程鹏, 罗汉, 常祎, 等. 祁连山一次地形云降水微物理特征飞机观测. 应用气象学报, 2021, 32(6): 691-705. doi:  10.11898/1001-7313.20210605

    Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. Journal of Applied Meteorological Science, 2021, 32(6): 691-705. doi:  10.11898/1001-7313.20210605
    [14] 常祎, 郭学良, 唐洁, 等. 青藏高原夏季对流云微物理特征和降水形成机制. 应用气象学报, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607

    Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. Journal of Applied Meteorological Science, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607
    [15] 张佃国, 郭学良, 龚佃利, 等. 山东省1989—2008年23架次飞机云微物理结构观测试验结果. 气象学报, 2011, 69(1): 195-207. doi:  10.3969/j.issn.1004-4965.2011.01.011

    Zhang D G, Guo X L, Gong D L, et al. The observational results of the clouds microphysical structure based on the data obtained by 23 sorties between 1989 and 2008 in Shandong Province. Acta Meteorologica Sinica, 2011, 69(1): 95-207. doi:  10.3969/j.issn.1004-4965.2011.01.011
    [16] 李仑格, 德力格尔. 高原东部春季降水云层的微物理特征分析. 高原气象, 2001, 20(2): 191-196. doi:  10.3321/j.issn:1000-0534.2001.02.013

    Li L G, De L. Analyses of microphysical features for spring precipitation cloud layers in east of Qinghai. Plateau Meteorology, 2001, 20(2): 191-196. doi:  10.3321/j.issn:1000-0534.2001.02.013
    [17] 苏正军, 刘卫国, 王广河, 等. 青海一次春季透雨降水过程的云物理结构分析. 应用气象学报, 2003, 14(增刊Ⅰ): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2003S1003.htm

    Su Z J, Liu W G, Wang G H, et al. Microphysical characteristics of a precipitaion process in Qinghai Province. Journal of Applied Meteorological Science, 2003, 14(Suppl I): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2003S1003.htm
    [18] 杨文霞, 牛生杰, 魏俊国, 等. 河北省层状云降水系统微物理结构的飞机观测研究. 高原气象, 2005, 24(1): 84-90. doi:  10.3321/j.issn:1000-0534.2005.01.013

    Yang W X, Niu S J, Wei J G, et al. Airborne observation for microphysical structure of precipitation system of stratiform cloud in Hebei Province. Plateau Meteorology, 2005, 24(1): 84-90. doi:  10.3321/j.issn:1000-0534.2005.01.013
    [19] 张佃国, 郭学良, 付丹红, 等. 2003年8—9月北京及周边地区云系微物理飞机探测研究. 大气科学, 2007, 31(4): 596-610. doi:  10.3878/j.issn.1006-9895.2007.04.05

    Zhang D G, Guo X L, Fu D H, et al. Aircraft observation on cloud microphysics in Beijing and its surrounding regions during August-September 2003. Chinese Journal of Atmospheric Sciences, 2007, 31(4): 596-610. doi:  10.3878/j.issn.1006-9895.2007.04.05
    [20] 范烨, 郭学良, 张佃国, 等. 北京及周边地区2004年8、9月层积云结构及谱分析飞机探测研究. 大气科学, 2010, 34(6): 1187-1200. doi:  10.3878/j.issn.1006-9895.2010.06.12

    Fan Y, Guo X L, Zhang D G, et al. Airborne particle measuring system measurement on structure and size distribution of stratocumulus during August to September in 2004 over Beijing and its surrounding areas. Chinese Journal of Atmospheric Sciences, 2010, 34(6): 1187-1200. doi:  10.3878/j.issn.1006-9895.2010.06.12
    [21] 李照荣, 李荣庆, 李宝梓. 兰州地区秋季层状云垂直微物理特征分析. 高原气象, 2003, 22(6): 583-589. doi:  10.3321/j.issn:1000-0534.2003.06.008

    Li Z R, Li R Q, Li B Z. Analyses on vertical microphysical characteristics of autumn stratiform cloud in Lanzhou region. Plateau Meteorology, 2003, 22(6): 583-589. doi:  10.3321/j.issn:1000-0534.2003.06.008
    [22] 段婧, 楼小凤, 陈勇, 等. 基于航测的珠三角气溶胶垂直分布及活化特性. 应用气象学报, 2019, 30(6): 677-689. doi:  10.11898/1001-7313.20190604

    Duan J, Lou X F, Chen Y, et al. Aircraft measurements of aerosol vertival distributions and its activation efficiency over the pearl river delta. Journal of Applied Meteorological Science, 2019, 30(6): 677-689. doi:  10.11898/1001-7313.20190604
    [23] 洪延超. 积层混合云数值模拟研究(Ⅱ)——云相互作用及暴雨产生机制. 气象学报, 1996, 54(6): 661-674. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB606.002.htm

    Hong Y C. The numerical simulation study of convective-stratiform mixed cloud, part (Ⅱ)-Interaction of clouds and formative mechanism of the heavy rain. Acta Meteorologica Sinica, 1996, 54(6): 661-674. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB606.002.htm
    [24] 李子华, 夏晓青, 章晴, 等. 梅雨锋云系亮带的初步研究. 气象科学, 1986(1): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX198601009.htm

    Li Z H, Xia X Q, Zhang Q. A prelminary study of the brigh band in the Meiyu frontal cloud system. Scientia Meteorologica Sinica, 1986(1): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX198601009.htm
    [25] 朱彤, 汪秀清, 朱蓉. 纯积云降水与积层混合云降水加热剖面的差异. 应用气象学报, 1995, 6(2): 171-176. http://qikan.camscma.cn/article/id/19950221

    Zhu T, Wang X Q, Zhu R. The Difference of the heating vertical profile between cumulus precipitation and stratus-cumulus mixing precipitation. Journal of Applied Meteorological Science, 1995, 6(2): 171-176. http://qikan.camscma.cn/article/id/19950221
    [26] Oliver F, Christoph S. Embedded cellular convection in moist flow past topography. Journal of the Atmospheric Sciences, 2005, 62(8): 2810-2828. doi:  10.1175/JAS3512.1
    [27] Li Y W, Niu S J. The formation and precipitation mechanism of two ordered patterns of embedded convection in stratiform cloud. Science China Earth Sciences, 2012, 55(1): 113-125. doi:  10.1007/s11430-011-4278-y
    [28] 张佃国, 姚展予, 龚佃利, 等. 环北京地区积层混合云微物理结构飞机联合探测研究. 大气科学学报, 2011, 34(1): 109-121. doi:  10.3969/j.issn.1674-7097.2011.01.014

    Zhang D G, Yao Z Y, Gong D L, et al. Microphysical structures of stratocumulums mixed cloud detected by aricraft around Beijing area. Transactions of Atmospheric Sciences, 2011, 34(1): 109-121. doi:  10.3969/j.issn.1674-7097.2011.01.014
    [29] 亓鹏, 郭学良, 卢广献, 等. 华北太行山东麓一次稳定性积层混合云飞机观测研究: 对流云/对流泡和融化层结构特征. 大气科学, 2019, 43(6): 1365-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906012.htm

    Qi P, Guo X L, Lu G X, et al. Aircraft measurements of a stable stratiform cloud with embedded convection in Eastern Taihang Mountain of North China: Characteristicsof embedded convection and melting layer structure. Chinese Journal of Atmospheric Sciences, 2019, 43(6): 1365-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906012.htm
    [30] 朱士超, 郭学良. 华北积层混合云中冰晶形状、分布与增长过程的飞机探测研究. 气象学报, 2014, 72(2): 366-389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402013.htm

    Zhu S C, Guo X L. Ice crystal habits, distribution and growth process in stratifrom clouds with embedded convection in North China: Aircraft measurements. Acta Meteorologica Sinica, 2014, 72(2): 366-389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402013.htm
    [31] 徐裕华. 西南气候. 北京: 气象出版社, 1991.

    Xu Y H. Southwest Climate. Beijing: China Meteorological Press, 1991.
    [32] 许美玲, 段旭, 杞明辉, 等. 云南省天气预报员手册. 北京: 气象出版社, 2011.

    Xu M L, Duan X, Qi M H, et al. Yunnan Weather Forecaster's Manual. Beijing: China Meteorological Press, 2011.
    [33] 秦剑, 琚建华, 解明恩. 低纬高原天气气候. 北京: 气象出版社, 1997.

    Qin J, Ju J H, Xie M E. Weather and Climate over Low Latitude Plateau. Beijing: China Meteorological Press, 1997.
    [34] 晏红明, 王灵, 周国连, 等. 云南夏季旱涝与前期冬季环流变化的关系. 应用气象学报, 2007, 18(3): 340-349. doi:  10.3969/j.issn.1001-7313.2007.03.010

    Yan H M, Wang L, Zhou G L, et al. The relationship between rainfall in Yunnan summer and the circulation in preceding winter. Journal of Applied Meteorological Science, 2007, 18(3): 340-349. doi:  10.3969/j.issn.1001-7313.2007.03.010
    [35] 樊冬, 夏珅宁, 史晓丁. 基于前向散射的云粒子探测技术研究. 激光技术, 2018, 42(增刊Ⅰ): 112-116.

    Fan D, Xia S N, Shi X D. Research of cloud particle detection technology based on forward scattering. Laser Technology, 2018, 42(Suppl I): 112-116.
    [36] 郭学良, 于子平, 杨泽后, 等. 高性能机载云粒子成像仪研制及应用. 气象学报, 2020, 78(6): 1050-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006013.htm

    Guo X L, Yu Z P, Yang Z H, et al. Development and application of the high-performance airborne cloud particle imager. Acta Meteorologica Sinica, 2020, 78(6): 1050-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006013.htm
    [37] 曾星, 伍波, 史晓丁, 等. 机载激光云粒子成像仪研制与校准研究. 激光技术, 2015, 39(6): 798-801. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201506014.htm

    Zeng X, Wu B, Shi X D, et al. Study on airborne laser cloud particle imaging probe and its calibration. Laser Technology, 2015, 39(6): 798-801. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201506014.htm
    [38] Korolev A V, Strapp J W, Isaac G A. Evaluation of the accuracy of PMS optical array probes. Journal of Atmospheric and Oceanic Technology, 1998, 15(3): 708-720. doi:  10.1175/1520-0426(1998)015<0708:EOTAOP>2.0.CO;2
    [39] 黄敏松, 雷恒池, 陈家田, 等. 机载光阵探头探测期间云粒子的破碎. 大气科学, 2016, 40(3): 647-656. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201603016.htm

    Huang M S, Lei H C, Chen J T, et al. Cloud particle shattering during sampling by airborne optical array probes. Chinese Journal of Atmospheric Sciences, 2016, 40(3): 647-656. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201603016.htm
    [40] 孙鸿娉, 李培仁, 闫世明, 等. 山西省2008—2010年64架次飞机云物理观测结果分析. 气象科技, 2014, 42(4): 682-689. doi:  10.3969/j.issn.1671-6345.2014.04.027

    Sun H P, Li P R, Yan S M, et al. Characteristics of cloud microphysical structure based on aircraft data in 2008-2010 in Shanxi Province. Meteorological Science and Technology, 2014, 42(4): 682-689. doi:  10.3969/j.issn.1671-6345.2014.04.027
    [41] Deng Z Z, Zhao C S, Zhang Q, et al. Statistical analysis of microphysical properties and the parameterization of effective radius of warm clouds in Beijing area. Atmospheric Research, 2009, 93(4): 888-896. doi:  10.1016/j.atmosres.2009.04.011
    [42] 王东海, 尹金方, 翟国庆. 1960年以来东亚季风区云-降水微物理的直接观测研究. 气象学报, 2014, 72(4): 639-657. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201404001.htm

    Wang D H, Yin J F, Zhai G Q. In-situ measurement of cloud-precipitatoin microphysics in East Asian monsoon region since 1960. Acta Meteorologica Sinica, 2014, 72(4): 639-657. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201404001.htm
    [43] 林海, 顾震潮. 云滴谱中第二极大形成的初步解释. 科学通报, 1965(10): 923-925. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB196510015.htm

    Lin H, Gu Z C. Preliminary explanation of the formation of the second maximum in the cloud drop spectrum. Chinese Science Bulletin, 1965(10): 923-925. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB196510015.htm
    [44] 郭丽君, 郭学良, 楼小凤, 等. 庐山云雾及降水的日、季节变化和宏微观物理特征观测研究. 气象学报, 2019, 77(5): 923-937. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201905010.htm

    Guo L J, Guo X L, Lou X F, et al. An observational study of diurnal and seasonal variations, and macroscopic and microphysical properties of clouds and precipitation over Mount Lu, Jiangxi, China. Acta Meteorologica Sinica, 2019, 77(5): 923-937. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201905010.htm
    [45] Zhou Y, Niu S J, Lü J J, et al. The effect of freezing drizzle, sleet and snow on microphysical characteristics of supercooled fog during the icing process in a mountainous area. Atmosphere, 2016, 7(11): 143. doi:  10.3390/atmos7110143
    [46] Rosenfeld D. Cloud-aerosol-precipitation Interactions Based of Satellite Retrieved Vertical Profiles of Cloud Microstructure//Remote Sensing of Aerosols, Clouds, and Precipitation. Elsevier, 2018: 129-152. http://www.sciencedirect.com/science/article/pii/b9780128104378000062
    [47] Korolev A, Shashkov A, Barker H. Calibrations and performance of the airborne cloud extinction probe. Journal of Atmospheric Oceanic Technology, 2014, 31(2): 326-345. doi:  10.1175/JTECH-D-13-00020.1
  • 加载中
图(7) / 表(4)
计量
  • 摘要浏览量:  542
  • HTML全文浏览量:  41
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2021-12-21
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回