留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对流降水云中大气垂直运动反演及个例试验

董佳阳 崔晔 阮征 李南 魏鸣 李丰

董佳阳, 崔晔, 阮征, 等. 对流降水云中大气垂直运动反演及个例试验. 应用气象学报, 2022, 33(2): 167-179. DOI:  10.11898/1001-7313.20220204..
引用本文: 董佳阳, 崔晔, 阮征, 等. 对流降水云中大气垂直运动反演及个例试验. 应用气象学报, 2022, 33(2): 167-179. DOI:  10.11898/1001-7313.20220204.
Dong Jiayang, Cui Ye, Ruan Zheng, et al. Retrieval and experiments of atmospheric vertical motions in convective precipitation clouds. J Appl Meteor Sci, 2022, 33(2): 167-179. DOI:  10.11898/1001-7313.20220204.
Citation: Dong Jiayang, Cui Ye, Ruan Zheng, et al. Retrieval and experiments of atmospheric vertical motions in convective precipitation clouds. J Appl Meteor Sci, 2022, 33(2): 167-179. DOI:  10.11898/1001-7313.20220204.

对流降水云中大气垂直运动反演及个例试验

DOI: 10.11898/1001-7313.20220204
资助项目: 

国家重点研发计划 2017YFC1501703

国家自然科学基金项目 41975046

中国气象科学研究院基本科研业务费项目 2020Z010

中国气象科学研究院科技发展基金 2020KJ021

详细信息
    通信作者:

    阮征, 邮箱: ruanz@cma.gov.cn

Retrieval and Experiments of Atmospheric Vertical Motions in Convective Precipitation Clouds

  • 摘要: 为深入认识对流降水云结构及动力特征, 基于降水频段调频连续波5520 MHz垂直指向雷达(VPR-CFMCW), 使用地面至15 km高度的反射率因子及径向速度, 建立对流降水云中大气垂直运动的反演方法, 分析对流垂直结构及大气垂直运动随高度分布的演变特征。对在广东龙门测站探测的2019年4月20—22日前汛期4次对流降水进行反演试验发现, 对流降水前大气上升运动对降水云反射率因子及地面降水有正贡献, 深厚对流具有倾斜性, 会导致垂直剖面在某些时刻呈分层结构;对流降水整层以下沉运动为主导, 高层大气上升运动与下沉运动交替出现, 低层大气下沉运动占比最高, 大气上升运动在6 km高度以上占比有所增加;大气垂直速度在高层较大、在低层较小, 超过10 m·s-1的强上升运动与下沉运动多出现在6 km高度以上, 4~6 km高度垂直运动变化较大, 4 km高度以下的平均下沉运动小于5 m·s-1, 上升运动约为2 m·s-1
  • 图  1  2019年4月20—22日4个个例的VPR-CFMCW数据

    (a)反射率因子, (b)径向速度, (c)速度谱宽

    Fig. 1  VPR-CFMCW data of four convections events from 20 Apr to 22 Apr in 2019

    (a)reflectivity, (b)radial velocity, (c)velocity spectral width

    图  2  Z-Vt关系

    (a)液态区拟合结果, (b)不同关系比较

    Fig. 2  Z-Vt relationship

    (a)the fitting result of rain region, (b)the comparison of different relationships

    图  3  4个个例对流核反射率因子的累积频率随高度变化

    (红线为亮带平均高度,黑色粗实线为最大频率廓线)

    Fig. 3  Cumulative frequency altitude diagrams of four events convective core reflectivity

    (the red line denotes the average height of the bright band, the bold solid line denotes profile of frequency)

    图  4  个例1对流阶段

    (a)反射率因子,(b)径向速度,(c)大气垂直运动Wair (黑色椭圆为强烈上升运动,红色椭圆为强烈下沉运动),(d)分钟降水量

    Fig. 4  The convective period of event 1

    (a)reflectivity, (b)radial velocity, (c)atmospheric vertical motions Wair (the black (red) ellipse denotes strong ascent (descent)), (d)minute rainfall

    图  5  图 4,但为个例2

    Fig. 5  The same as in Fig. 4, but for event 2

    图  6  图 4,但为个例3

    Fig. 6  The same as in Fig. 4, but for event 3

    图  7  图 4,但为个例4

    Fig. 7  The same as in Fig. 4, but for event 4

    图  8  滤除低速度值(|Wair|≤1 m·s-1)前后4个个例对流核的大气垂直运动

    (实线表示平均值,虚线表示上升气流第5百分位数,点线表示下沉气流第95百分位数) (a)滤除前全部样本,(b)滤除后的上升气流样本,(c)滤除后的下沉气流样本

    Fig. 8  The atmospheric vertical motions in convective core of four events before and after filtering the low velocity value(|Wair|≤1 m·s-1)

    (the solid line denotes the average, the dashed line denotes the 5th percentile of updraft, the dotted line denotes the 95th percentile of downdraft) (a)all samples before the filtering,(b)updraft samples after the filtering, (c)downdraft samples after the filtering

    图  9  4个个例对流核的大气垂直运动占比图

    Fig. 9  Proportion of atmospheric vertical motions in convective core of four events

  • [1] Jr Houze R A.Cloud Dynamics.San Diego,CA,USA:Academic,1993:573.
    [2] 韩丰, 龙明盛, 李月安, 等. 循环神经网络在雷达临近预报中的应用. 应用气象学报, 2019, 30(1): 61-69. doi:  10.11898/1001-7313.20190106

    Han F, Long M S, Li Y A, et al. The application of recurrent neural network to nowcasting. J Appl Meteor Sci, 2019, 30(1): 61-69. doi:  10.11898/1001-7313.20190106
    [3] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501

    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [4] Heymsfield G M, Tian L, Heymsfield A J, et al. Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J Atmos Sci, 2010, 67(2): 285-308. doi:  10.1175/2009JAS3132.1
    [5] Byers H R, Braham R R. The Thunderstorm: Report of the Thunderstorm Project. US Weather Bureau, Washington DC: 1949: 287.
    [6] Lemone M A, Zipser E J. Cumulonimbus vertical velocity events in GATE. Part Ⅰ: Diameter, intensity and mass flux. J Atmos Sci, 1980, 37(11): 2444-2457. doi:  10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2
    [7] Anderson N F, Grainger C A, Stith J L. Characteristics of strong updrafts in precipitation systems over the central tropical Pacific Ocean and in the Amazon. J Appl Meteorol, 2005, 44(5): 731-738. doi:  10.1175/JAM2231.1
    [8] 朱士超, 袁野, 吴月, 等. 江淮地区孤立对流云统计特征. 应用气象学报, 2019, 30(6): 690-699. doi:  10.11898/1001-7313.20190605

    Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. doi:  10.11898/1001-7313.20190605
    [9] 冯晋勤, 刘铭, 蔡菁. 闽西山区"7·22"极端降水过程中尺度对流特征. 应用气象学报, 2018, 29(6): 748-758. doi:  10.11898/1001-7313.20180610

    Feng J Q, Liu M, Cai J. Meso-scale convective characteristics of "7·22" extreme rain in the west mountainous area of Fujian. J Appl Meteor Sci, 2018, 29(6): 748-758. doi:  10.11898/1001-7313.20180610
    [10] Tridon F, Battaglia A. Dual-frequency radar Doppler spectral retrieval of rain drop size distributions and entangled dynamics variables. J Geophys Res, 2015, 120(11): 5585-5601. doi:  10.1002/2014JD023023
    [11] Williams C R, Beauchamp R M, ChandrasekarV. Verticalair motions and raindrop size distributions estimated using mean Doppler velocity difference from 3- and 35-GHz vertically pointing radars. IEEE Trans Geosci Remote Sens, 2016, 54(10): 1-13. doi:  10.1109/TGRS.2016.2594250
    [12] 王俊, 王文青, 王洪, 等. 山东北部一次夏末雹暴地面降水粒子谱特征. 应用气象学报, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309

    Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309
    [13] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304

    Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304
    [14] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606

    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [15] Cui Y, Ruan Z, Wei M, et al. Vertical structure and dynamical properties during snow events in middle latitudes of China from observations by the C-band vertically pointing radar. J Meteor Soc Japan, 2020, 98(3): 527-550. doi:  10.2151/jmsj.2020-028
    [16] 阮悦, 阮征, 魏鸣, 等. 基于C-FMCW雷达的高原夏季对流云垂直结构分析研究. 高原气象, 2018, 37(1): 93-105. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201801008.htm

    Ruan Y, Ruan Z, Wei M, et al. Research of the vertical structure of summer convective precipiationcloud over the Qinghai-Tibetan Plateau by C-FMCW radar. Plateau Meteor, 2018, 37(1): 93-105. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201801008.htm
    [17] 金龙, 阮征, 葛润生, 等. C-FMCW雷达对江淮降水云零度层亮带探测研究. 应用气象学报, 2016, 27(3): 312-322. doi:  10.11898/1001-7313.20160306

    Jin L, Ruan Z, Ge R S, et al. Bright band analysis in Yangtze-Huaihe Region of Anhui using data detection from C-FMCW radar. J Appl Meteor Sci, 2016, 27(3): 312-322. doi:  10.11898/1001-7313.20160306
    [18] Pang S Z, Ruan Z, Yang L, et al. Estimating raindrop size distributions and vertical air motions with spectral difference using vertically pointing radar. J Atmos Ocean Technol, 2021, 38: 1697-1713.
    [19] Giangrande S E, Collis S, Straka J, et al. A summary of convective-core vertical velocity properties using ARM UHF wind profilers in Oklahoma. J Appl Meteorol Clim, 2013, 52(10): 2278-2295. doi:  10.1175/JAMC-D-12-0185.1
    [20] Wang D, Giangrande S E, Feng Z, et al. Updraft and downdraft core size and intensity as revealed by radar wind profilers: MCS observations and idealized model comparisons. J Geophys Res Atmos, 2020, 125(11): e2019JD031774.
    [21] Heymsfield A J, Westbrook C D. Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J Atmos Sci, 2010, 67(8): 2469-2482. doi:  10.1175/2010JAS3379.1
    [22] Spek A L J, Unal C M H, Moisseev D N, et al. A new technique to categorize and retrieve the microphysical properties of ice particles above the melting layer using radar dual-polarization spectral analysis. J Atmos Ocean Technol, 2010, 25(3): 482-497.
    [23] Cheng L, English M. A relationship between hailstone concentration and size. J Atmos Sci, 1983, 40(1): 204-213. doi:  10.1175/1520-0469(1983)040<0204:ARBHCA>2.0.CO;2
    [24] Hogan R J, Westbrook C D. Equation for the microwave backscatter cross section of aggregate snowflakes using the self-similar rayleigh-gans approximation. J Atmos Sci, 2014, 71(9): 3292-3301. doi:  10.1175/JAS-D-13-0347.1
    [25] 李丰, 阮征, 王红艳, 等. 基于功率谱的风廓线雷达反射率因子定标方法. 应用气象学报, 2021, 32(3): 315-331. doi:  10.11898/1001-7313.20210305

    Li F, Ruan Z, Wang H Y, et al. A calibration method of WPR echo intensity with Doppler velocity spectrum. J Appl Meteor Sci, 2021, 32(3): 315-331. doi:  10.11898/1001-7313.20210305
  • 加载中
图(9)
计量
  • 摘要浏览量:  330
  • HTML全文浏览量:  27
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 修回日期:  2021-12-24
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回