留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京大兴国际机场相控阵雷达强对流天气监测

张曦 黄兴友 刘新安 陆建兵 耿利宁 黄浩 甄广炬

张曦, 黄兴友, 刘新安, 等. 北京大兴国际机场相控阵雷达强对流天气监测. 应用气象学报, 2022, 33(2): 192-204. DOI:  10.11898/1001-7313.20220206..
引用本文: 张曦, 黄兴友, 刘新安, 等. 北京大兴国际机场相控阵雷达强对流天气监测. 应用气象学报, 2022, 33(2): 192-204. DOI:  10.11898/1001-7313.20220206.
Zhang Xi, Huang Xingyou, Liu Xin, et al. The hazardous convective storm monitoring of phased-array antenna radar at Daxing International Airport of Beijing. J Appl Meteor Sci, 2022, 33(2): 192-204. DOI:  10.11898/1001-7313.20220206.
Citation: Zhang Xi, Huang Xingyou, Liu Xin, et al. The hazardous convective storm monitoring of phased-array antenna radar at Daxing International Airport of Beijing. J Appl Meteor Sci, 2022, 33(2): 192-204. DOI:  10.11898/1001-7313.20220206.

北京大兴国际机场相控阵雷达强对流天气监测

DOI: 10.11898/1001-7313.20220206
资助项目: 中国民用航空华北地区空中交通管理局202008号科技项目
详细信息
    通信作者:

    张曦, 邮箱: zhangxi.thinking@gmail.com

The Hazardous Convective Storm Monitoring of Phased-array Antenna Radar at Daxing International Airport of Beijing

  • 摘要: 北京大兴国际机场相控阵雷达性能先进,可实现对灾害性飞行天气的高效监测。对比该雷达和S波段多普勒天气雷达在2020年6月18日和25日两次强对流过程探测能力表明:2020年6月18日相控阵雷达探测到雷暴清晰的外流边界等弱回波,直到弱回波触发新对流单体并加强后,S波段多普勒天气雷达才探测到该弱回波,时间上比相控阵雷达晚24 min; 2020年6月25日的强对流雹暴过程,相控阵雷达探测的径向速度涡旋结构比S波段雷达清晰,垂直气流悬垂回波及雷暴形态与强雷暴的理论模型更吻合,S波段雷达垂直结构不典型; 相控阵雷达的回波强度空间变化层次丰富,S波段雷达空间分布显得粗糙; 相控阵雷达探测的冰雹三体散射回波及旁瓣回波比S波段雷达显著。因此相控阵雷达具有时间分辨率、空间分辨率、空间覆盖率、弱回波探测能力等方面的优势,更适合监测冰雹、外流边界等中小尺度灾害性飞行天气。
  • 图  1  2020年6月25日C-PAR的1.75°仰角Z平面图

    (黑色方框表示有界弱回波区,相邻距离圈间隔为50 km,下同)

    Fig. 1  The horizontal structure of Z of C-PAR on 25 Jun 2020

    (the black box denotes bounded weak echo region, the distance between adjacent circles is 50 m, the same hereinafter)

    图  2  2020年6月25日C-PAR的1.75°仰角V平面图

    Fig. 2  The horizontal structure of V of C-PAR on 25 Jun 2020

    图  3  2020年6月25日C-PAR的ZV剖面图

    Fig. 3  Cross-section of Z and V of C-PAR on 25 Jun 2020

    图  4  2020年6月25日C-PAR和CINRAD-SA的Z平面图局部

    Fig. 4  The detailed horizontal structure of Z of C-PAR and CINRAD-SA on 25 Jun 2020

    图  5  2020年6月25日C-PAR和CINRAD-SA的Z剖面图

    Fig. 5  Cross-section of Z of C-PAR and CINRAD-SA on 25 Jun 2020

    图  6  2020年6月18日C-PAR的Z平面图

    Fig. 6  The horizontal structure of Z of C-PAR on 18 Jun 2020

    图  7  2020年6月18日C-PAR的V平面图

    Fig. 7  The horizontal structure of V of C-PAR on 18 Jun 2020

    图  8  2020年6月18日CINRAD-SA在0.43°仰角的Z平面图

    Fig. 8  The horizontal structure of Z of CINRAD-SA at 0.43° elevation on 18 Jun 2020

    图  9  2020年6月18日CINRAD-SA在0.43°仰角的Z平面图局部

    Fig. 9  The detailed horizontal structure of Z of CINRAD-SA at 0.43° elevation on 18 Jun 2020

    图  10  2020年6月18日C-PAR在0.25°仰角的Z平面图局部

    Fig. 10  The detailed horizontal structure of Z of C-PAR at 0.25° elevation on 18 Jun 2020

    表  1  C-PAR和CINRAD-SA的技术指标

    Table  1  Technical parameters of C-PAR and CINRAD-SA

    参数 C-PAR CINRAD-SA
    波长/cm 5.56 10.45
    强度监测距离/km ≥450 460
    测速范围/(m·s-1) -64~64 -48~48
    方位/(°) 0~360 0~360
    俯仰/(°) -2~90 -2~90
    水平波束宽度(法线方向)/(°) ≤0.43(发射法向),≤0.43(接收法向) 0.94
    垂直波束宽度(法线方向)/(°) ≤0.48(发射法向),≤0.45(接收法向) 0.98
    总输出功率峰值/kW ≥23.6 ≥650
    噪声系数/dB ≤2.5 dB ≤3 dB
    动态范围/dB ≥90 dB ≥95 dB
    脉冲宽度/μs 60,40和0.5 4.7和1.57
    下载: 导出CSV
  • [1] Zrnic D S, Kimpel J F, Forsyth D E, et al. Agile beam phased-array radar for weather observations. Bull Amer Meteor Soc, 2007, 88(11): 1753-1766. doi:  10.1175/BAMS-88-11-1753
    [2] Heinselman P L, Priegnitz D L, Manross K L, et al. Rapid sampling of severe storms by the national weather radar testbed phased array radar. Wea Forecasting, 2008, 23(5): 808-824. doi:  10.1175/2008WAF2007071.1
    [3] 刘黎平, 胡志群, 吴翀. 双线偏振雷达和相控阵天气雷达技术的发展和应用. 气象科技进展, 2016, 6(3): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201603009.htm

    Liu L P, Hu Z Q, Wu C. Development and application of dual linear polarization radar and phased-array radar. Adv Meteor Sci Tech, 2016, 6(3): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201603009.htm
    [4] 吴翀, 刘黎平, 张志强. S波段相控阵天气雷达与新一代多普勒天气雷达定量对比方法及其初步应用. 气象学报, 2014, 72(2): 390-401. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402014.htm

    Wu C, Liu L P, Zhang Z Q. Quantitative comparison algorithm between the S-band phased array radar and the CINRAD/SA and its preliminary application. Acta Meteor Sinica, 2014, 72(2): 390-401. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402014.htm
    [5] 张羽, 田聪聪, 傅佩玲等. 广州X波段双偏振相控阵天气雷达观测试验进展. 气象科技进展, 2020, 10(6): 80-85. doi:  10.3969/j.issn.2095-1973.2020.06.014

    Zhang Y, Tian C C, Fu P L, et al. Progress of observation experiment for X-band dual polarization phased array radars in Guangzhou. Adv Meteor Sci Tech, 2020, 10(6): 80-85. doi:  10.3969/j.issn.2095-1973.2020.06.014
    [6] 李哲, 吴翀, 刘黎平, 等. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102

    Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102
    [7] Zhang Y, Bai L Q, Meng Z Y, et al. Rapid-scan and polarimetric phased-array radar observations of a tornado in the Pearl River Estuary. J Trop Meteor, 2021, 27(1): 81-86.
    [8] 王黉, 李英, 文永仁. 川藏高原一次混合型强对流天气的观测特征. 应用气象学报, 2021, 32(5): 567-579. doi:  10.11898/1001-7313.20210505

    Wang H, Li Y, Wen Y R. Observational characteristics of a hybrid severe convective event in the Sichuan-Tibet Region. J Appl Meteor Sci, 2021, 32(5): 567-579. doi:  10.11898/1001-7313.20210505
    [9] 刘黎平, 吴林林, 吴翀, 等. X波段相控阵天气雷达对流过程观测外场试验及初步结果分析. 大气科学, 2014, 38(6): 1079-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201406006.htm

    Liu L P, Wu L L, Wu C, et al. Field experiment on convective precipitation by X-Band phased-array radar and preliminary results. Chinese J Atmos Sci, 2014, 38(6): 1079-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201406006.htm
    [10] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606

    Fu P L, Hu D M, Huang H, et al. Observation of tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [11] 张蔚然, 吴翀, 刘黎平, 等. 双偏振相控阵雷达与业务雷达的定量对比及观测精度研究. 高原气象, 2021, 40(2): 424-435. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102019.htm

    Zhang W R, Wu C, Liu L P, et al. Research on quantitative comparison and observation precision of dual polarization phased array radar and operational radar. Plateau Meteorology, 2021, 40(2): 424-435. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102019.htm
    [12] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501

    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [13] 刘俊, 黄兴友, 何雨芩, 等. X波段相控阵气象雷达回波数据的对比分析. 高原气象, 2015, 34(4): 1167-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201504028.htm

    Liu J, Huang X Y, He Y Q, et al. Comparative analysis of X-band phased array antenna weather radar measurements. Plateau Meteorology, 2015, 34(4): 1167-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201504028.htm
    [14] Wu C, Liu L P. Comparison of the observation capability of an X-band phased-array radar with an X-band Doppler radar and S-band operational radar. Adv Atmos Sci, 2014, 31(4): 814-824. doi:  10.1007/s00376-013-3072-5
    [15] 程元慧, 傅佩玲, 胡东明, 等. 广州相控阵天气雷达组网方案设计及其观测试验. 气象, 2020, 46(6): 823-836. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202006009.htm

    Cheng Y H, Fu P L, Hu D M, et al. The Guangzhou phased-array radar networking scheme set-up and observation test. Meteor Mon, 2020, 46(6): 823-836. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202006009.htm
    [16] 王超, 吴翀, 刘黎平. X波段双线偏振雷达数据质量分析及控制方法. 高原气象, 2019, 38(3): 636-649. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201903018.htm

    Wang C, Wu C, Liu L P. Data quality analysis and control method of X-band dual polarization radar. Plateau Meteorology, 2019, 38(3): 636-649. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201903018.htm
    [17] French M M, Bluestein H B. Mobile, phased-array, Doppler radar observations of tornadoes at X band. Mon Wea Rev, 2014, 142(3): 1010-1036. doi:  10.1175/MWR-D-13-00101.1
    [18] 王刚, 魏艳强, 王志锐, 等. 频分多波束技术在相控阵天气雷达中的应用. 电子设计工程, 2021, 29(1): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ202101014.htm

    Wang G, Wei Y Q, Wang Z R, et al. Application of frequency division multi-beam technology in phased array weather radar. Electronic Design Engineering, 2021, 29(1): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ202101014.htm
    [19] 张培昌, 杜秉玉, 戴铁丕. 雷达气象学. 北京: 气象出版社, 2000.

    Zhang P C, Du B Y, Dai T P. Radar Meteorology. Beijing: China Meteorological Press, 2000.
    [20] 俞小鼎, 姚秀萍, 熊廷南, 等. 多普勒天气雷达原理与业务应用. 北京: 气象出版社, 2006.

    Yu X D, Yao X P, Xiong T N, et al. Principle and Application of Doppler Weather Radar. Beijing: China Meteorological Press, 2006.
    [21] 刘涛, 端义宏, 冯佳宁, 等. 台风利奇马(1909)双眼墙特征及长时间维持机制. 应用气象学报, 2021, 32(3): 289-301. doi:  10.11898/1001-7313.20210303

    Liu T, Duan Y H, Feng J N, et al. Characteristics and mechanisms of long-lived concentric eyewalls in Typhoon Lekima in 2019. J Appl Meteor Sci, 2021, 32(3): 289-301. doi:  10.11898/1001-7313.20210303
    [22] 高丽, 潘佳文, 蒋璐璐, 等. 一次长生命史超级单体降雹演化机制及双偏振雷达回波分析. 气象, 2021, 47(2): 170-182. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202102004.htm

    Gao L, Pan J W, Jiang L L, et al. Analysis of evolution mechanism and characteristics of dual polarization radar echo of a hail caused by long-life supercell. Meteor Mon, 2021, 47(2): 170-182. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202102004.htm
    [23] 常祎, 郭学良, 唐洁, 等. 青藏高原夏季对流云微物理特征和降水形成机制. 应用气象学报, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607

    Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607
    [24] 于明慧, 刘黎平, 吴翀, 等. 利用相控阵及双偏振雷达对2016年6月3日华南一次强对流过程的分析. 气象, 2019, 45(3): 330-344. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201903004.htm

    Yu M H, Liu L P, Wu C, et al. Analysis of severe convective process in South China on 3 June 2016 using phased-array and dual-polarization radar. Meteor Mon, 2019, 45(3): 330-344. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201903004.htm
    [25] 齐道日娜, 何立富, 王秀明, 等. "7·20"河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101

    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [26] 崔梦雪, 张晗昀, 张妤晴, 等. 利用相控阵雷达对2020年5月闽南一次降雹过程分析. 海峡科学, 2021, 173(5): 6-12. doi:  10.3969/j.issn.1673-8683.2021.05.003

    Cui M X, Zhang H Y, Zhang Y Q, et al. Analysis of a hailfall process in southern Fujian in May 2020 using phased array radar. Straits Science, 2021, 173(5): 6-12. doi:  10.3969/j.issn.1673-8683.2021.05.003
    [27] 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103

    Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103
    [28] 王林, 沈新勇, 王勇, 等. 华南一次飑线升尺度增长过程的机制分析. 高原气象, 2021, 40(1): 145-158. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202101013.htm

    Wang L, Shen X Y, Wang Y, et al. Mechanism analysis of a squall line upscale growing process in South China. Plateau Meteorology, 2021, 40(1): 145-158. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202101013.htm
    [29] 吴海英, 曾明剑, 蒋义芳, 等. 一次雹暴过程中对流系统演变特征的模拟分析. 高原气象, 2021, 40(3): 569-579. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202103010.htm

    Wu H Y, Zeng M J, Jiang Y F, et al. Simulation analysis of evolution characteristics of the convective system during a hail storm course. Plateau Meteorology, 2021, 40(3): 569-579. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202103010.htm
    [30] 马瑞阳, 郑栋, 姚雯. 雷暴云特征数据集及我国雷暴活动特征. 应用气象学报, 2021, 32(3): 358-369. doi:  10.11898/1001-7313.20210308

    Ma R Y, Zhen D, Yao W. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi:  10.11898/1001-7313.20210308
  • 加载中
图(10) / 表(1)
计量
  • 摘要浏览量:  358
  • HTML全文浏览量:  53
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2022-01-17
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回