留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

福建安溪雨滴谱特征

黄泽文 彭思越 张浩然 郑佳锋 曾正茂 王莹珏

黄泽文, 彭思越, 张浩然, 等. 福建安溪雨滴谱特征. 应用气象学报, 2022, 33(2): 205-217. DOI:  10.11898/1001-7313.20220207..
引用本文: 黄泽文, 彭思越, 张浩然, 等. 福建安溪雨滴谱特征. 应用气象学报, 2022, 33(2): 205-217. DOI:  10.11898/1001-7313.20220207.
Huang Zewen, Peng Siyue, Zhang Haoran, et al. Characteristics of raindrop size distribution at Anxi of Fujian. J Appl Meteor Sci, 2022, 33(2): 205-217. DOI:  10.11898/1001-7313.20220207.
Citation: Huang Zewen, Peng Siyue, Zhang Haoran, et al. Characteristics of raindrop size distribution at Anxi of Fujian. J Appl Meteor Sci, 2022, 33(2): 205-217. DOI:  10.11898/1001-7313.20220207.

福建安溪雨滴谱特征

DOI: 10.11898/1001-7313.20220207
资助项目: 

国家自然科学基金面上项目 41875039

数字福建气象大数据研究所(闽南师范大学)开放课题 202010704

大学生创新创业训练计划项目 202010621003

大学生创新创业训练计划项目 202010621005

大学生创新创业训练计划项目 202110621003

详细信息
    通信作者:

    郑佳锋, 邮箱: zjf1988@cuit.edu.cn

Characteristics of Raindrop Size Distribution at Anxi of Fujian

  • 摘要: 雨滴谱观测对理解云-降水物理过程和提高雷达降水估测等有重要意义,利用福建安溪2017—2020年雨滴谱资料,研究不同季节和不同类型的雨滴谱特征和差异,提出该地区降水的雷达反射率因子与降水强度(Z-R)关系和形状参数与斜率参数(μ -Λ)关系,并与国内其他典型地区进行对比。结果表明:福建安溪雨滴谱季节差异明显,整体上夏季雨滴粒径最大、总数浓度最高,冬季粒径最小,春季总数浓度最低; 随粒径增大,四季雨滴数浓度季节变化与台湾省桃园市相似,但小雨滴数浓度存在差异。与华东和华北地区相比,福建安溪夏季层状云小雨滴数浓度更高,中大雨滴数浓度则与华东地区较为一致; 夏季对流云小雨滴数浓度与华北地区接近,中雨滴数浓度则与华东地区接近,大雨滴数浓度则介于两个地区之间。夏季福建安溪层状云和对流云降水的Z-R关系与台湾省桃园市得到的结果较为吻合; 斜率参数Λ大于2.5 mm-1时,福建安溪的形状参数μ值与美国佛罗里达地区的结果十分相近。
  • 图  1  2017年5月—2020年5月观测资料质量控制前(a)和质量控制后(b)的雨滴直径D与下落速度Vt累积频次f统计分布

    Fig. 1  Statistical cumulative frequency f distribution of diameter D and falling velocity Vt for raindrops before(a) and after(b) quality control from May 2017 to May 2020

    图  2  2017年5月—2020年5月厦门探空站的大气层平均温度(a)、相对湿度(b)、对流有效位能(箱内中的叉号和短横线分别代表平均值和中位数,箱线上下边缘为25%和75%分位数,线段最高点和最低点分别为最大值和最小值,下同) (c)和水平风(d)

    Fig. 2  Average profiles of atmospheric temperature(a), relative humidity(b), convective available energy (the cross and horizontal line denote the average and median, respectively; the upper and lower edges in box denote the 25 and 75 percentiles, respectively; the highest and the lowest denote the maximum and minimum, respectively, the same hereinafter) (c) and horizontal wind(d) observed by the radiosonde at Xiamen Site from May 2017 to May 2020

    图  3  不同季节平均谱积分量和Gamma参数的箱线图

    Fig. 3  Boxplots for integral quantities and Gamma parameters in four seasons

    图  4  四季平均雨滴谱

    (a)完整雨滴谱,(b)粒径小于1.4 mm雨滴谱局部放大图

    Fig. 4  Average raindrop size distribution for four seasons

    (a)the entire spectra, (b)the enlarged spectra for raindrops smaller than 1.4 mm

    图  5  层状云和对流云降水的雨滴谱箱线图

    Fig. 5  Boxplot of the entire stratiform and convective rain spectrum samples

    图  6  层状云和对流云降水的雨滴谱积分量和Gamma参数的概率分布

    Fig. 6  Probability distributions of integral quantities and Gamma parameters derived from the stratiform and convective spectra

    图  7  福建安溪全年两类降水的平均观测谱和Gamma拟合谱(a)以及福建安溪夏季层状云降水(b) 和对流云降水(c)的Gamma谱与华东地区和华北地区对比

    Fig. 7  Average rain spectra and fitted Gamma spectra for two precipitation types observed during the entire period at Anxi of Fujian(a), and comparisons of Gamma spectra among Anxi of Fujian, East China and North China for stratiform(b) and convective(c) precipitation in summer

    图  8  全年和夏季层状云降水与对流云降水的Z-R累积频次f分布和幂函数拟合结果

    (a)全年层状云降水,(b)全年对流云降水, (c)夏季层状云降水, (d)夏季对流云降水

    Fig. 8  Cumulative frequency f distributions of Z-R and fitted power relations for the entire samples and summer samples of stratiform and convective precipitation

    (a)entire samples of stratiform precipitation, (b)entire samples of convective precipitation, (c)summer samples of stratiform precipitation, (d)summer samples of convective precipitation

    图  9  福建安溪全年(a)和夏季(b)雨滴谱样本满足条件NT>1000 mm-3, R>5 mm·h-1μΛ散点分布(灰色十字) 和拟合结果(实线)

    Fig. 9  Scatters of μ and Λ (the gray cross) and the fitted binomial relations (the solid line) meeting the conditions of NT>1000 mm-3 and R>5 mm·h-1 at Anxi of Fujian during the entire period(a) and in summer(b)

  • [1] Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci, 2003, 60(2): 354-365. doi:  10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [2] Zeng Q W, Zhang Y, Lei H C, et al. Microphysical characteristics of precipitation during pre-monsoon, monsoon, and post-monsoon periods over the South China Sea. Adv Atmos Sci, 2019, 36(10): 1103-1120. doi:  10.1007/s00376-019-8225-8
    [3] 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103

    Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103
    [4] Wu Y H, Liu L P. Statistical characteristics of raindrop size distribution in the Tibetan Plateau and Southern China. Adv Atmos Sci, 2017, 34(6): 727-736. doi:  10.1007/s00376-016-5235-7
    [5] Wen L, Zhao K, Wang M Y, et al. Seasonal variations of observed raindrop size distribution in East China. Adv Atmos Sci, 2019, 36(4): 346-362. doi:  10.1007/s00376-018-8107-5
    [6] 常祎, 郭学良. 青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征. 科学通报, 2016, 61(15): 1706-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201615011.htm

    Chang Y, Guo X L. Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau. Sci Bull, 2016, 61(15): 1706-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201615011.htm
    [7] 柳臣中, 周筠珺, 谷娟, 等. 成都地区雨滴谱特征. 应用气象学报, 2015, 26(1): 112-121. doi:  10.11898/1001-7313.20150112

    Liu C Z, Zhou Y J, Gu J, et al. Characteristics of raindrop size distribution in Chengdu. J Appl Meteor Sci, 2015, 26(1): 112-121. doi:  10.11898/1001-7313.20150112
    [8] Chen B J, Yang J, Pu J P. Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China. J Meteorol Soc Jpn Ser Ⅱ, 2013, 91(2): 215-227. doi:  10.2151/jmsj.2013-208
    [9] Zhang A S, Hu J J, Chen S, et al. Statistical characteristics of raindrop size distribution in the monsoon season observed in Southern China. Remote Sens, 2019, 11(4): 432. doi:  10.3390/rs11040432
    [10] 李慧, 银燕, 单云鹏, 等. 黄山层状云和对流云降水不同高度的雨滴谱统计特征分析. 大气科学, 2018, 42(2): 268-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201802003.htm

    Li H, Yin Y, Shan Y P, et al. Statistical characteristics of raindrop size distribution for stratiform and convective precipitation at different altitudes in Mt Huangshan. Chinese J Atmos Sci, 2018, 42(2): 268-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201802003.htm
    [11] Geoffroy O, Siebesma A P, Burnet F. Characteristics of the raindrop distributions in RICO shallow cumulus. Atmos Chem Phys, 2014, 14(19): 10897-10909. doi:  10.5194/acp-14-10897-2014
    [12] Bao X W, Wu L G, Tang B, et al. Variable raindrop size distributions in different rainbands associated with Typhoon Fitow (2013). J Geophys Res Atmos, 2019, 124(22): 12262-12281. doi:  10.1029/2019JD030268
    [13] 金祺, 袁野, 刘慧娟, 等. 江淮之间夏季雨滴谱特征分析. 气象学报, 2015, 73(4): 778-788. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504013.htm

    Jin Q, Yuan Y, Liu H J, et al. Analysis of microphysical characteristics of the raindrop spectrum over the area between the Yangtze River and the Huaihe River during summer. Acta Meteorologica Sinica, 2015, 73(4): 778-788. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504013.htm
    [14] 袁野, 朱士超, 李爱华. 黄山雨滴下落过程滴谱变化特征. 应用气象学报, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610

    Yuan Y, Zhu S C, Li A H. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610
    [15] Jaffrain J, Berne A. Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J Hydrometeorol, 2011, 12(3): 352-370. doi:  10.1175/2010JHM1244.1
    [16] 安英玉, 金凤岭, 张云峰, 等. 地面雨滴谱观测的图像自动识别方法. 应用气象学报, 2008, 19(2): 188-193. doi:  10.3969/j.issn.1001-7313.2008.02.008

    An Y Y, Jin F L, Zhang Y F, et al. Automatic identification methods of ground raindrop spectrum observation and image. J Appl Meteor Sci, 2008, 19(2): 188-193. doi:  10.3969/j.issn.1001-7313.2008.02.008
    [17] Friedrich K, Higgins S, Masters F J, et al. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J Atmos Ocean Technol, 2013, 30(9): 2063-2080. doi:  10.1175/JTECH-D-12-00254.1
    [18] Yuter S E, Kingsmill D E, Nance L B, et al. Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J Appl Meteor Climatol, 2006, 45(10): 1450-1464. doi:  10.1175/JAM2406.1
    [19] Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence. Rev Geophys, 1973, 11(1): 1-35. doi:  10.1029/RG011i001p00001
    [20] Wang Y J, Zheng J F, Cheng Z G, et al. Characteristics of raindrop size distribution on the eastern slope of the Tibetan Plateau in summer. Atmosphere, 2020, 11(6): 562. doi:  10.3390/atmos11060562
    [21] Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Climate Appl Meteor, 1983, 22(10): 1764-1775. doi:  10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
    [22] Cao Q, Zhang G F. Errors in estimating raindrop size distribution parameters employing disdrometer and simulated raindrop spectra. J Appl Meteor Climatol, 2009, 48(2): 406-425. doi:  10.1175/2008JAMC2026.1
    [23] Seela B K, Janapati J, Lin P L, et al. Raindrop size distribution characteristics of summer and winter season rainfall over north Taiwan. J Geophys Res Atmos, 2018, 123(20): 11602-11624. doi:  10.1029/2018JD028307
    [24] 梅海霞, 梁信忠, 曾明剑, 等. 2015-2017年夏季南京雨滴谱特征. 应用气象学报, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111

    Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111
    [25] Lee M T, Lin P L, Chang W Y, et al. Microphysical characteristics and types of precipitation for different seasons over North Taiwan. J Meteor Soc Japan, 2019, 97(4): 841-865. doi:  10.2151/jmsj.2019-048
    [26] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601

    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [27] Tokay A, Peterson W A, Gatlin P, et al. Comparison of raindrop size distribution measurements by collocated disdrometers. J Atmos Ocean Technol, 2013, 30(8): 1672-1690. doi:  10.1175/JTECH-D-12-00163.1
    [28] 翟盘茂, 李蕾, 周佰铨, 等. 江淮流域持续性极端降水及预报方法研究进展. 应用气象学报, 2016, 27(5): 631-640. doi:  10.11898/1001-7313.20160511

    Zhai P M, Li L, Zhou B Q, et al. Progress on mechanism and prediction methods for persistent extreme precipitation in the Yangtze-Huai River Valley. J Appl Meteor Sci, 2016, 27(5): 631-640. doi:  10.11898/1001-7313.20160511
    [29] 赵城城, 张乐坚, 梁海河, 等. 北京山区和平原地区夏季雨滴谱特征分析. 气象, 2021, 47(7): 830-842. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202107006.htm

    Zhao C C, Zhang L J, Liang H H, et al. Microphypical characteristics of the raindrop size distribution between mountain and plain areas over Beijing in summer. Meteor Mon, 2021, 47(7): 830-842. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202107006.htm
    [30] Ji L, Chen H N, Li L, et al. Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing, Northern China. Remote Sens, 2019, 11(12): 1479. doi:  10.3390/rs11121479
    [31] Cui C G, Dong X Q, Wang B, et al. Integrative monsoon frontal rainfall experiment (IMFRE-I): A mid-term review. Adv Atmos Sci, 2021, 38(3): 357-374. doi:  10.1007/s00376-020-0209-1
    [32] 阮征, 李淘, 金龙, 等. 大气垂直运动对雷达估测降水的影响. 应用气象学报, 2017, 28(2): 200-208. doi:  10.11898/1001-7313.20170207

    Ruan Z, Li T, Jin L, et al. Influence of vertical air motion on the radar quantitative precipitation estimation. J Appl Meteor Sci, 2017, 28(2): 200-208. doi:  10.11898/1001-7313.20170207
    [33] Seela B K, Janapati J, Lin P L, et al. Comparison study of summer season raindrop size distribution between Palau and Taiwan, two islands in Western Pacific. J Geophys Res Atmos, 2017, 122(21): 11787-11805. doi:  10.1002/2017JD026816
    [34] 林文, 林长城, 李白良, 等. 登陆台风麦德姆不同部位降水强度及谱特征. 应用气象学报, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212

    Lin W, Lin C C, Li B L, et al. Rainfall intensity and raindrop spectrum for different parts in landing Typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212
    [35] Zhang G F, Vivekananda J, Brandes E A, et al. The shape-slope relation in observed Gamma raindrop size distributions: Statistical error or useful information?. J Atmos Ocean Technol, 2003, 20(8): 1106-1119. doi:  10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2
    [36] Huo Z Y, Ruan Z, Wei M, et al. Statistical characteristics of raindrop size distribution in South China summer based on the vertical structure derived from VPR-CFMCW. Atmos Res, 2019, 222: 47-61. doi:  10.1016/j.atmosres.2019.01.022
  • 加载中
图(9)
计量
  • 摘要浏览量:  1642
  • HTML全文浏览量:  182
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 修回日期:  2022-01-19
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回