留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原-孟加拉湾大气热力差异与夏季暴雨

陈金秋 施晓晖

陈金秋, 施晓晖. 青藏高原-孟加拉湾大气热力差异与夏季暴雨. 应用气象学报, 2022, 33(2): 244-256. DOI:  10.11898/1001-7313.20220210..
引用本文: 陈金秋, 施晓晖. 青藏高原-孟加拉湾大气热力差异与夏季暴雨. 应用气象学报, 2022, 33(2): 244-256. DOI:  10.11898/1001-7313.20220210.
Chen Jinqiu, Shi Xiaohui. Possible effects of the difference in atmospheric heating between the Tibetan Plateau and the Bay of Bengal on spatiotemporal evolution of rainstorms. J Appl Meteor Sci, 2022, 33(2): 244-256. DOI:  10.11898/1001-7313.20220210.
Citation: Chen Jinqiu, Shi Xiaohui. Possible effects of the difference in atmospheric heating between the Tibetan Plateau and the Bay of Bengal on spatiotemporal evolution of rainstorms. J Appl Meteor Sci, 2022, 33(2): 244-256. DOI:  10.11898/1001-7313.20220210.

青藏高原-孟加拉湾大气热力差异与夏季暴雨

DOI: 10.11898/1001-7313.20220210
资助项目: 

国家自然科学基金面上项目 41775060

中国气象科学研究院基本科研业务费重点项目 2021Z004

详细信息
    通信作者:

    施晓晖, 邮箱: shixh@cma.gov.cn

Possible Effects of the Difference in Atmospheric Heating Between the Tibetan Plateau and the Bay of Bengal on Spatiotemporal Evolution of Rainstorms

  • 摘要: 利用1979—2019年多年平均5—8月的逐日气象资料,采用EOF,MV-EOF、相关分析和合成分析等方法,对夏季青藏高原-孟加拉湾的大气热源与中国东部暴雨的时空演变特征及两者之间的联系进行探讨。研究结果表明:MV-EOF能够很好地表现不同要素的空间分布特征及其时间演变之间的联系。结果显示:在气候平均状态下,强降水事件分别发生在华南地区、华西和长江中下游地区时,青藏高原东部和孟加拉湾的大气加热出现相反的变化趋势,说明青藏高原东部和孟加拉湾之间的海陆热力对比很可能是导致中国东部强降水事件在不同地点发生的关键因素之一。合成分析结果揭示可能物理机制:青藏高原和孟加拉湾的热力对比变化通过调制大气垂直环流,影响南亚高压和西北太平洋副热带高压的位置和强度,改变水汽输送,最终对中国东部暴雨事件的时空变化产生重要的影响。
  • 图  1  MV-EOF分解第2模态的暴雨降水量空间分布(a)与时间系数(b)以及第3模态的暴雨降水量空间分布(c)与时间系数(d)

    Fig. 1  The spatial distribution of rainstorm precipitation(a) with the time coefficient(b) of the second mode of MV-EOF decomposition and the spatial distribution of rainstorm precipitation(c) with the time coefficient(d) of the third mode of MV-EOF decomposition

    图  2  大气视热源的MV-EOF分解第2模态(a)和第3模态(b)空间分布

    (粗实线为青藏高原的范围示意)

    Fig. 2  The spatial distribution of the apparent heat source of the atmosphere of the second mode(a) and the third mode(b) of MV-EOF decomposition

    (the thick solid line denotes the scope of the Tibetan Plateau)

    图  3  MV-EOF分解第2模态和第3模态的空间分布

    (粗实线为青藏高原的范围示意)
    (a)第2模态500 hPa位势高度,(b)第3模态500 hPa位势高度,(c)第2模态整层水汽输送通量(矢量) 及其散度(阴影),(d)第3模态整层水汽输送通量(矢量) 及其散度(阴影)

    Fig. 3  The spatial distribution of the second mode and the third mode of MV-EOF decomposition

    (the thick solid line denotes the scope of the Tibetan Plateau)
    (a)500 hPa geopotential height of the second mode, (b)500 hPa geopotential height of the third mode, (c)integrated water transport flux (the vector) and its divergence (the shaded) of the second mode, (d)integrated water transport flux (the vector) and its divergence (the shaded) of the third mode

    图  4  大气视热源的EOF分解第2模态和第3模态的空间分布及时间系数(粗实线为青藏高原的范围示意) (a)第2模态的空间分布,(b)第2模态的时间系数,(c)第3模态的空间分布,(d)第3模态的时间系数

    (粗实线为青藏高原的范围示意)
    (a)第2模态的空间分布,(b)第2模态的时间系数,(c)第3模态的空间分布,(d)第3模态的时间系数

    Fig. 4  The spatial distribution and time coefficient of the apparent heat source of the atmosphere of the second and the third modes of EOF decomposition

    (the thick solid line denotes the scope of the Tibetan Plateau)
    (a)the spatial distribution of the second mode of EOF decomposition, (b)the time coefficient of the second mode of EOF decomposition, (c)the spatial distribution of the third mode of EOF decomposition, (d)the time coefficient of the third mode of EOF decomposition

    图  5  大气视热源的PC2高值阶段(6月13日—7月12日) (a)和PC3高值阶段(5月15日—6月12日) (b)的合成中国东部暴雨降水量分布

    Fig. 5  The distribution of synthetic rainstorm precipitation in eastern China in the PC2 high value stage (from 13 Jun to 12 Jul) (a) and in the PC3 high value stage (from 15 May to 12 Jun) (b) based on EOF decomposition of the apparent heat source of the atmosphere

    图  6  大气视热源的PC2(a)和PC3(b)与500 hPa垂直速度的相关系数

    (仅显示达到0.05显著性水平的部分,粗实线为青藏高原的范围示意)

    Fig. 6  The correlation coefficients between the PC2(a), PC3(b) of EOF decomposition of the apparent heat source of the atmosphere and vertical velocity at 500 hPa respectively

    (only the contours passing the test of 0.05 level respectively are drawn, the thick solid line denotes the scope of the Tibetan Plateau)

    图  7  大气视热源的PC2高值阶段(6月13日—7月12日) 200 hPa(a),500 hPa(b)及PC3高值阶段(5月15日—6月12日) 200 hPa(c),500 hPa(d)位势高度的合成分布(单位:dagpm)

    (粗实线为青藏高原的范围示意)

    Fig. 7  Distribution of composited geopotential heights at 200 hPa(a), 500 hPa(b) in the PC2 high value stage (from 13 Jun to 12 Jul) and 200 hPa(c), 500 hPa(d) in the PC3 high value stage based on EOF decomposition of the apparent source of the atmosphere (from 15 May to 12 Jun)(unit: dagpm)

    (the thick solid line denotes the scope of the Tibetan Plateau)

    图  8  大气视热源的PC2(a)和PC3(b)与整层水汽输送通量(矢量,仅给出达到0.05显著性水平的部分) 和中国东部暴雨降水量的相关系数(填色,深(浅)红色和深(浅)蓝色分别表示通过0.05(0.1) 显著性检验的正、负相关区)

    (粗实线为青藏高原的范围示意)

    Fig. 8  The correlation coefficients between the PC2(a), PC3(b) of EOF decomposition of the apparent heat source of the atmosphere and integrated water transport flux (the vector), rainstorm precipitation in eastern China (the shaded, dark(light) red and dark(light) blue denote the positive and the negative passing the test of 0.05(0.1) level, respectively)

    (the thick solid line denotes the scope of the Tibetan Plateau)

    图  9  气候平均8月200 hPa(a)、500 hPa(b)位势高度(单位:dagpm)

    (粗虚线为槽线,粗实线为青藏高原的范围示意)

    Fig. 9  Distribution of composited geopotential heights at 200 hPa(a), 500 hPa(b) in Aug (unit: dagpm)

    (the thick dotted line denotes the trough line, the thick solid line denotes the Tibetan Plateau)

  • [1] 翟盘茂, 李蕾, 周佰铨, 等. 江淮流域持续性极端降水及预报方法研究进展. 应用气象学报, 2016, 27(5): 631-640. doi:  10.11898/1001-7313.20160511

    Zhai P M, Li L, Zhou B Q, et al. Progress on mechanism and prediction methods for persistent extreme precipitation in the Yangtze-Huai River Valley. J Appl Meteor Sci, 2016, 27(5): 631-640. doi:  10.11898/1001-7313.20160511
    [2] 王同美, 吴国雄, 万日金. 青藏高原的热力和动力作用对亚洲季风区环流的影响. 高原气象, 2008, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200801000.htm

    Wang T M, Wu G X, Wan R J. Influence of the mechanical and thermal forcing of Tibetan Plateau on the circulation of the Asian summer monsoon area. Plateau Meteorology, 2008, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200801000.htm
    [3] Zhai P M, Zhang X B, Hui W, et al. Trends in total precipitation and frequency of daily precipitation extremes over China. J Climate, 2005, 18(7): 1096-1108. doi:  10.1175/JCLI-3318.1
    [4] 刘小宁. 我国暴雨极端事件的气候变化特征. 灾害学, 1999, 14(1): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU199901014.htm

    Liu X N. Climatic characteristics of extreme rainstorm events in China. Journal of Catastrophology, 1999, 14(1): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU199901014.htm
    [5] 翟盘茂, 王萃萃, 李威. 极端降水事件变化的观测研究. 气候变化研究进展, 2007, 3(3): 144-148. doi:  10.3969/j.issn.1673-1719.2007.03.004

    Zhai P M, Wang C C, Li W. A review on study of change in precipitation extremes. Climate Change Research, 2007, 3(3): 144-148. doi:  10.3969/j.issn.1673-1719.2007.03.004
    [6] 杨金虎, 江志红, 王鹏祥, 等. 西北地区东部夏季极端降水量非均匀性特征. 应用气象学报, 2008, 19(1): 111-115. doi:  10.3969/j.issn.1001-7313.2008.01.016

    Yang J H, Jiang Z H, Wang P X, et al. Intra-seasonal inhomogeneity of summer extreme precipitation in the east part of Northwest China. J Appl Meteor Sci, 2008, 19(1): 111-115. doi:  10.3969/j.issn.1001-7313.2008.01.016
    [7] 朱乾根, 周军. 急流切变线暴雨的诊断分析. 气象, 1986, 12(6): 2-6. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198606000.htm

    Zhu Q G, Zhou J. Diagnostic analysis of torrent shear line rainstorm. Meteor Mon, 1986, 12(6): 2-6. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198606000.htm
    [8] 韩洁, 管兆勇, 李明刚. 夏季长江中下游流域性极端日降水事件的环流异常特征及其与非极端事件的比较. 热带气象学报, 2012, 28(3): 367-378. doi:  10.3969/j.issn.1004-4965.2012.03.009

    Han J, Guan Z Y, Li M G. Comparisons of circulation anomalies between the daily precipitation extreme and non-extreme events in the middle and lower reaches of Yangtze River in boreal summer. Journal of Tropical Meteorology, 2012, 28(3): 367-378. doi:  10.3969/j.issn.1004-4965.2012.03.009
    [9] Qian J H, Tao W K, Lau K M, et al. Mechanisms for torrential rain associated with the Mei-yu development during SCSMEX 1998. Mon Wea Rev, 2004, 132(1): 3-27. doi:  10.1175/1520-0493(2004)132<0003:MFTRAW>2.0.CO;2
    [10] Wang W C, Gong W, Wei H, et al. A regional model simulation of the 1991 severe precipitation event over the Yangtze-Huai River Valley. Part I: Precipitation and circulation statistics. J Climate, 2010, 13(1): 74-92.
    [11] 陶诗言. 中国之暴雨. 北京: 科学出版社, 1980.

    Tao S Y. Rainstorm in China. Beijing: Science Press, 1980.
    [12] Hong C, Hsu H, Lin N, et al. Roles of European blocking and tropical-extratropical interaction in the 2010 Pakistan flooding. Geophys Res Lett, 2011, 38(13): L13806. doi:  10.1029/2011GL047583/pdf
    [13] 陈丹萍, 管兆勇, 侯俊, 等. 2007年夏季江淮强降水过程中10-30 d低频变化及其与对流层上层波包活动的联系. 大气科学学报, 2016, 39(2): 177-188. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201602004.htm

    Chen D P, Guan Z Y, Hou J, et al. The 10-30-day intraseasonal oscillations of circulations and their associations with Rossby wave packets in the upper troposphere during persistent severe rainfall in summer 2007. Trans Atmos Sci, 2016, 39(2): 177-188. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201602004.htm
    [14] 陶诗言, 卫捷. 再论夏季西北太平洋副热带高压的西伸北跳. 应用气象学报, 2006, 17(5): 513-525. doi:  10.3969/j.issn.1001-7313.2006.05.001

    Tao S Y, Wei J. The westward, northward advance of the subtropical high over the West Pacific in summer. J Appl Meteor Sci, 2006, 17(5): 513-525. doi:  10.3969/j.issn.1001-7313.2006.05.001
    [15] 王黎娟, 管兆勇, 何金海. 2005年6月华南致洪暴雨的大尺度环流特征及成因探讨. 南京气象学院学报, 2007, 30(2): 145-152. doi:  10.3969/j.issn.1674-7097.2007.02.001

    Wang L J, Guan Z Y, He J H. Feature of large scale circulation for flash-flood-producing rainstorm over South China in June 2005 and its possible cause. Journal of Nanjing Institute of Meteorology, 2007, 30(2): 145-152. doi:  10.3969/j.issn.1674-7097.2007.02.001
    [16] 甘晶晶, 汤燕冰. 江淮流域持续性暴雨过程的中期信号初析. 浙江大学学报(理学版), 2009, 36(4): 477-486. doi:  10.3785/j.issn.1008-9497.2009.04.025

    Gan J J, Tang Y B. Preliminary study on mediurrange signals of persistent heavy rainfall events over Yangtze River-Haihe River Valley. Journal of Zhejiang University(Sci Edi), 2009, 36(4): 477-486. doi:  10.3785/j.issn.1008-9497.2009.04.025
    [17] 李靖怡, 王遵娅, 温敏. 多要素表征的东亚季风区准双周振荡特征. 应用气象学报, 2020, 31(6): 653-667. doi:  10.11898/1001-7313.20200602

    Li J Y, Wang Z Y, Wen M. Characteristics of QBWO over the East Asian monsoon region presented by different elements. J Appl Meteor Sci, 2020, 31(6): 653-667. doi:  10.11898/1001-7313.20200602
    [18] Jones C, Waliser D E, Lau K M, et al. Global occurrences of extreme precipitation and the Madden-Julian Oscillation: Observations and predictability. J Climate, 2004, 17(23): 4575-4589. doi:  10.1175/3238.1
    [19] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501

    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [20] 丁一汇. 中国暴雨理论的发展历程与重要进展. 暴雨灾害, 2019, 38(5): 395-406. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201905002.htm

    Ding Y H, The major advances and development process of the theory of heavy rainfalls in China. Torrential Rain and Disasters, 2019, 38(5): 395-406. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201905002.htm
    [21] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304

    Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304
    [22] 李泽椿, 谌芸, 张夕迪, 等. 中央气象台暴雨预报业务的发展及思考. 暴雨灾害, 2019, 38(5): 407-415. doi:  10.3969/j.issn.1004-9045.2019.05.002

    Li Z C, Shen Y, Zhang X D, et al. Development and perspectives on torrential rain forecasting operation in National Meteorological Center. Torrential Rain and Disasters, 2019, 38(5): 407-415. doi:  10.3969/j.issn.1004-9045.2019.05.002
    [23] 智协飞, 赵忱. 基于集合成员订正的强降水多模式集成预报. 应用气象学报, 2020, 31(3): 303-314. doi:  10.11898/1001-7313.20200305

    Zhi X F, Zhao C. Heavy precipitation forecasts based on multi-model ensemble members. J Appl Meteor Sci, 2020, 31(3): 303-314. doi:  10.11898/1001-7313.20200305
    [24] 董晓云, 余锦华, 梁信忠, 等. CWRF模式极端降水模拟误差订正. 应用气象学报, 2020, 31(4): 504-512. doi:  10.11898/1001-7313.20200412

    Dong X Y, Yu J H, Liang X Z, et al. Bias correction of summer extreme precipitation simulated by CWRF model. J Appl Meteor Sci, 2020, 31(4): 504-512. doi:  10.11898/1001-7313.20200412
    [25] 刘伯奇, 祝从文. 中国夏季降水预测因子潜在技巧分布图及应用. 应用气象学报, 2020, 31(5): 570-582. doi:  10.11898/1001-7313.20200505

    Liu B Q, Zhu C W. Potential skill map of predictors applied to the seasonal forecast of summer rainfall in China. J Appl Meteor Sci, 2020, 31(5): 570-582. doi:  10.11898/1001-7313.20200505
    [26] Huang R. The numerical simulation of the three-dimensional teleconnections in the summer circulation over the Northern Hemisphere. Adv Atmos Sci, 1985, 2(2): 81-92. doi:  10.1007/BF03179740
    [27] 吴国雄, 张永生. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅰ. 爆发地点. 大气科学, 1998, 22(6): 825-838. doi:  10.3878/j.issn.1006-9895.1998.06.03

    Wu G X, Zhang Y S. Thermal and mechanical forcing of the Tibetan Plateau and the Asian monsoon onset. Part Ⅰ: Situating of the onset. Chinese J Atmos Sci, 1998, 22(6): 825-838. doi:  10.3878/j.issn.1006-9895.1998.06.03
    [28] 吴国雄, 张永生. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅱ. 爆发时间. 大气科学, 1999, 23(1): 51-61. doi:  10.3878/j.issn.1006-9895.1999.01.07

    Wu G X, Zhang Y S. Thermal and mechanical forcing of the Tibetan Plateau and Asian monsoon onset. Part Ⅱ: Timing of the onset. Chinese J Atmos Sci, 1999, 23(1): 51-61. doi:  10.3878/j.issn.1006-9895.1999.01.07
    [29] 王娟怀, 李清泉, 汪方, 等. 基于DERF2.0的华南前汛期降水订正. 应用气象学报, 2021, 32(1): 115-128. doi:  10.11898/1001-7313.20210110

    Wang J H, Li Q Q, Wang F, et al. Correction of precipitation forecast predicted by DERF2.0 during the pre-flood season in South China. J Appl Meteor Sci, 2021, 32(1): 115-128. doi:  10.11898/1001-7313.20210110
    [30] Zhang Y S, Li T, Wang B. Decadal change of the spring snow depth over the Tibetan Plateau. J Climate, 2004, 17(14): 2780-2793. doi:  10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2
    [31] Fan K, Xu Z, Tian B, et al. Has the intensity of the interannual variability in summer rainfall over South China remarkably increased?. Meteor Atmos Phys, 2014, 124(1/2): 23-32. http://or.nsfc.gov.cn/bitstream/00001903-5/261464/1/1000014236419.pdf
    [32] 赵平, 陈隆勋. 35年来青藏高原大气热源气候特征及其与中国降水的关系. 中国科学(地球科学), 2001, 31(4): 327-332. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200104008.htm

    Zhao P, Chen L X. Climate characteristics of atmospheric heat sources over the Tibetan Plateau and its relationship with precipitation in China in the past 35 years. Sci China(Earth Sci), 2001, 31(4): 327-332. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200104008.htm
    [33] 简茂球, 罗会邦, 乔云亭. 青藏高原东部和西太平洋暖池区大气热源与中国夏季降水的关系. 热带气象学报, 2004, 20(4): 355-364. doi:  10.3969/j.issn.1004-4965.2004.04.003

    Jian M Q, Luo H B, Qiao Y T. On the Relationships between the summer rainfall in China and the atmospheric heat sources over the eastern Tibetan Plateau and the Western Pacific warm pool. Journal of Tropical Meteorology, 2004, 20(4): 355-364. doi:  10.3969/j.issn.1004-4965.2004.04.003
    [34] Duan A, Wang M, Lei Y, et al. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980-2008. J Climate, 2013, 26(1): 261-275. doi:  10.1175/JCLI-D-11-00669.1
    [35] 李栋梁, 柳苗, 王慧. 高原东部凝结潜热及其对北半球500 hPa高度场和我国汛期降水的影响. 高原气象, 2008, 27(4): 714-718. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200804002.htm

    Li D L, Liu M, Wang H. Latent heat series over the east part of QXP in rainy season and its impact on 500 hPa height fields of Northern Hemisphere and precipitation in China flood season. Plateau Meteorology, 2008, 27(4): 714-718. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200804002.htm
    [36] 施晓晖, 温敏. 中国持续性暴雨特征及青藏高原热源的影响. 高原气象, 2015, 34(3): 611-620. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201503002.htm

    Shi X H, Wen M. Distribution and variation of persistent heavy rainfall events in China and possible impacts of heating source anomaly over Qinghai-Xizang Plateau. Plateau Meteorology, 2015, 34(3): 611-620. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201503002.htm
    [37] Shi X H, Chen J Q, Wen M. The relationship between heavy precipitation in the eastern region of China and atmospheric heating anomalies over the Tibetan Plateau and its surrounding areas. Theor Appl Climatol, 2019, 137(5): 2335-2349. http://www.onacademic.com/detail/journal_1000041575627799_d122.html
    [38] Wang B. The vertical structure and development of the ENSO anomaly mode during 1979-1989. J Atmos Sci, 1992, 49(8): 698-712. doi:  10.1175/1520-0469(1992)049<0698:TVSADO>2.0.CO;2
    [39] Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart J Roy Meteor Soc, 2011, 137(656): 553-597. doi:  10.1002/qj.828
    [40] 钟珊珊, 何金海, 管兆勇, 等. 1961-2001年青藏高原大气热源的气候特征. 气象学报, 2009, 67(3): 407-416. doi:  10.3321/j.issn:0577-6619.2009.03.007

    Zhong S S, He J H, Guan Z Y, et al. Climatic characteristics of the atmospheric heat source over the Tibetan Plateau during 1961-2001. Acta Meteor Sinica, 2009, 67(3): 407-416. doi:  10.3321/j.issn:0577-6619.2009.03.007
    [41] 叶笃正, 张捷迁. 青藏高原加热作用对夏季东亚大气环流影响的初步模拟实验. 中国科学, 1974, 3(3): 91-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197403009.htm

    Yeh D Z, Zhang J Q. A preliminary simulation experiment on the influence of heating over the Tibetan Plateau on the atmospheric circulation over East Asia in summer. Sci China, 1974, 3(3): 91-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197403009.htm
    [42] 刘新, 吴国雄, 刘屹岷, 等. 青藏高原加热与亚洲环流季节变化和夏季风爆发. 大气科学, 2002, 26(6): 781-793. doi:  10.3878/j.issn.1006-9895.2002.06.07

    Liu X, Wu G X, Liu Y M, et al. Tibetan Plateau heating, seasonal variation of Asian circulation and onset of summer monsoon. Chinese J Atmos Sci, 2002, 26(6): 781-793. doi:  10.3878/j.issn.1006-9895.2002.06.07
    [43] Wu G X, Liu Y M, Wang T M, et al. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrometeor, 2007, 8(4): 770-789. doi:  10.1175/JHM609.1
    [44] 陶诗言, 张庆云. 亚洲冬夏季风对ENSO事件的响应. 大气科学, 1998, 22(4): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.001.htm

    Tao S Y, Zhang Q Y. Response of Asian winter and summer monsoon to ENSO events. Chinese J Atmos Sci, 1998, 22(4): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.001.htm
    [45] 赵强, 严华生, 程路. ENSO发展和衰减阶段的陕西夏季降水异常特征. 应用气象学报, 2013, 24(4): 495-503. doi:  10.3969/j.issn.1001-7313.2013.04.012

    Zhao Q, Yan H S, Cheng L. Characteristics of Shaanxi summer precipitation anomalies in ENSO developing and decaying stages. J Appl Meteor Sci, 2013, 24(4): 495-503. doi:  10.3969/j.issn.1001-7313.2013.04.012
    [46] 程正泉, 陈联寿, 李英. 登陆热带气旋与夏季风相互作用对暴雨的影响. 应用气象学报, 2012, 23(6): 660-671. doi:  10.3969/j.issn.1001-7313.2012.06.003

    Cheng Z Q, Chen L S, Li Y. Interaction between land falling tropical cyclone and summer monsoon with influences on torrential rain. J Appl Meteor Sci, 2012, 23(6): 660-671. doi:  10.3969/j.issn.1001-7313.2012.06.003
  • 加载中
图(9)
计量
  • 摘要浏览量:  309
  • HTML全文浏览量:  34
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 修回日期:  2022-12-20
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回