留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南京降水氢氧同位素监测特征

朱璇 肖薇 王晶苑 楚淏然 胡勇博 谢成玉 郑有飞

朱璇, 肖薇, 王晶苑, 等. 南京降水氢氧同位素监测特征. 应用气象学报, 2022, 33(3): 353-363. DOI:  10.11898/1001-7313.20220309..
引用本文: 朱璇, 肖薇, 王晶苑, 等. 南京降水氢氧同位素监测特征. 应用气象学报, 2022, 33(3): 353-363. DOI:  10.11898/1001-7313.20220309.
Zhu Xuan, Xiao Wei, Wang Jingyuan, et al. Monitoring characteristics of hydrogen and oxygen isotopes in precipitation of Nanjing. J Appl Meteor Sci, 2022, 33(3): 353-363. DOI:  10.11898/1001-7313.20220309.
Citation: Zhu Xuan, Xiao Wei, Wang Jingyuan, et al. Monitoring characteristics of hydrogen and oxygen isotopes in precipitation of Nanjing. J Appl Meteor Sci, 2022, 33(3): 353-363. DOI:  10.11898/1001-7313.20220309.

南京降水氢氧同位素监测特征

DOI: 10.11898/1001-7313.20220309
资助项目: 

国家自然科学基金项目 41975143

国家自然科学基金项目 42021004

国家重点研发计划 2019YFA0607202

国家重点研发计划 2020YFA0607501

河北省气象与生态环境重点实验室开放研究基金项目 Z201901H

详细信息
    通信作者:

    肖薇,邮箱:wei.xiao@nuist.edu.cn

Monitoring Characteristics of Hydrogen and Oxygen Isotopes in Precipitation of Nanjing

  • 摘要: 基于2018年7月—2019年6月南京降水同位素观测数据和中国气象局气象观测数据,研究南京降水稳定同位素组成的变化特征,对比热带气旋降水、梅雨降水和其他降水的降水同位素组成特征,研究降水同位素组成与热带气旋移动路径关系。结果表明:南京降水氧同位素组成(δ18O)和氢同位素组成(δ2H)的变化范围分别为-16.3‰~4.0‰和-103.0‰~32.9‰,雨季降水氢氧同位素组成相对贫化,非雨季相对富集;降水氘盈余的降水加权平均值为15.5‰,表明南京降水受陆面过程影响大。从降水量权重看,热带气旋降水和梅雨降水强度大,降水氢氧同位素组成严重贫化;其他降水的强度相对较弱,降水氢氧同位素组成比较富集;受水汽源地和陆面循环等过程的综合影响,热带气旋降水氘盈余小于全球平均值(10‰),梅雨降水氘盈余略高于全球平均值,其他降水氘盈余远高于全球平均值。登陆前仅在海洋上移动的热带气旋,降水氘盈余维持在7.5‰~8.6‰,但二次登陆的热带气旋降水氘盈余远大于10‰,可能是受到陆地蒸散过程的影响。
  • 图  1  2018年7月—2019年6月南京降水同位素组成及降水量变化

    Fig. 1  Time series of the isotopic compositions and the precipitation of Nanjing from Jul 2018 to Jun 2019

    图  2  2018年7月—2019年6月南京降水量、降水氘盈余、降水氢氧同位素组成的关系

    (虚线为全球大气降水线,实线为线性回归线)

    Fig. 2  Relations among precipitation, d-excess of precipitation, the hydrogen and the oxygen isotopic compositions of Nanjing from Jul 2018 to Jun 2019

    (the dotted line denotes the global meteoric water line, the solid line denotes linear regression line)

    图  3  不同类型降水过程850 hPa风场(矢量) 和水汽通量(填色, 单位:g·cm-1·hPa-1·s-1)

    Fig. 3  850 hPa wind (the vector) and water vapor flux (the shaded, unit:g·cm-1·hPa-1·s-1) in different precipitation processes

    表  1  2018年7月—2019年6月南京降水同位素组成和降水量

    Table  1  Amount-weighted isotopic compositions and the precipitation of Nanjing from Jul 2018 to Jun 2019

    季节 氧同位素组成/‰ 氢同位素组成/‰ 降水氘盈余/‰ 降水量/mm
    春季 -3.3 -12.9 13.1 60.0
    夏季 -10.0 -69.1 10.8 437.2
    秋季 -7.4 -39.6 20.1 115.3
    冬季 -6.5 -28.8 23.3 209.6
    下载: 导出CSV

    表  2  2018年7月—2019年6月南京不同类型降水同位素组成

    Table  2  Isotopic compositions of different precipitation type of Nanjing from Jul 2018 to Jun 2019

    类型 降水次数 降水量/mm 平均单次降水/mm 氧同位素组成/‰ 氢同位素组成/‰ 降水氘盈余/‰
    热带气旋降水 4 218.9 54.7 -10.5±0.1 -75.4±0.5 8.9±0.6
    梅雨降水 5 163.0 32.6 -10.4±0.1 -71.1±0.5 12.2±0.0
    其他降水 43 432.3 10.0 -6.3±0.1 -30.6±0.3 19.9±0.7
    下载: 导出CSV

    表  3  热带气旋及降水同位素组成

    Table  3  Tropical cyclones and precipitation isotopic compositions

    名称 强度级别 中心最低气压/hPa 降水量/mm 氧同位素组成/‰ 氢同位素组成/‰ 降水氘盈余/‰
    安比 强热带风暴 980 9.0 -6.3±0.1 -43.0±0.2 7.5±0.3
    云雀 台风 955 25.9 -6.7±0.1 -40.3±0.2 13.4±0.8
    摩羯 热带风暴 980 36.0 -6.7±0.2 -46.4±0.4 7.5±1.1
    温比亚 强热带风暴 982 148.0 -12.4±0.1 -90.6±0.6 8.6±0.4
    下载: 导出CSV
  • [1] Sjostrom D J, Welker J M.The influence of airmass source on the seasonal isotopic composition of precipitation, eastern USA.Journal of Geochemical Exploration, 2009, 102(3):103-112. doi:  10.1016/j.gexplo.2009.03.001
    [2] Uemura R, Matsui Y, Yoshimura K, et al. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. Journal of Geophysical Research Atmospheres, 2008, 113(D19). DOI: 10.1029/2008JD010209.
    [3] Cai Z Y, Tian L D. Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian monsoon region. Journal of Climate, 2016, 29(4): 1339-1352. doi:  10.1175/JCLI-D-15-0363.1
    [4] Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16(4): 436-468. doi:  10.3402/tellusa.v16i4.8993
    [5] Pfahl S, Wernli H, Yoshimura K. The isotopic composition of precipitation from a winter storm—A case study with the limited-area model COSMOiso. Atmospheric Chemistry and Physics, 2012, 12(3): 1629-1648. doi:  10.5194/acp-12-1629-2012
    [6] Froehlich K, Kralik M, Papesch W, et al. D-excess in precipitation of Alpine regions-moisture recycling. Isotopes in Environmental and Health Studies, 2008, 44(1): 61-70. doi:  10.1080/10256010801887208
    [7] Kong Y L, Pang Z H, Froehlich K. Quantifying recycled moisture fraction in precipitation of an arid region using D-excess. Tellus B Chemical and Physical Meteorology, 2013, 65(1): 19251. doi:  10.3402/tellusb.v65i0.19251
    [8] Tang Y, Pang H, Zhang W, et al. Effects of changes in moisture source and the upstream rainout on stable isotopes in summer precipitation-a case study in Nanjing, East China. Hydrology and Earth System Sciences, 2015, 12(4): 3919-3944.
    [9] Wang D, Tian L, Cai Z, et al. Indian monsoon precipitation isotopes linked with high level cloud cover at local and regional scales. Earth and Planetary Science Letters, 2020, 529: 115837. doi:  10.1016/j.epsl.2019.115837
    [10] Burnett A W, Mullins H T, Patterson W P. Relationship between atmospheric circulation and winter precipitation δ18O in central New York State. Geophysical Research Letters, 2004, 31(22): L22209.
    [11] Liu Z, Yoshmura K, Bowen G J, et al. Pacific-North American teleconnection controls on precipitation isotopes (δ18O) across the contiguous United States and adjacent regions: A GCM-based analysis. Journal of Climate, 2014, 27(3): 1046-1061. doi:  10.1175/JCLI-D-13-00334.1
    [12] Yamanaka T, Shimada J, Miyaoka K. Footprint analysis using event-based isotope data for identifying source area of precipitated water. Journal of Geophysical Research Atmospheres, 2002, 107(D22): 4626. DOI: 10.1029/2001JD001187.
    [13] Araguás-Araguás L, Froehlich K, Rozanski K. Stable isotope composition of precipitation over Southeast Asia. Journal of Geophysical Research Atmospheres, 1998, 103(22): 28721-28742.
    [14] Laskar A H, Sharma N, Ramesh R, et al. Paleoclimate and paleovegetation of Lower Narmada Basin, Gujarat, Western India, inferred from stable carbon and oxygen isotopes. Quaternary International, 2010, 227(2): 183-189. doi:  10.1016/j.quaint.2010.05.020
    [15] Masson-Delmotte V, Jouzel1 J, Landais A, et al. GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science, 2005, 309(5731): 118-121. doi:  10.1126/science.1108575
    [16] Aemisegger F, Pfahl S, Sodemann H, et al. Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmospheric Chemistry and Physics, 2014, 14(8): 4029-4054. doi:  10.5194/acp-14-4029-2014
    [17] Lewis S C, LeGrande A N, Kelley M, et al. Modeling insights into deuterium excess as an indicator of water vapor source conditions. Journal of Geophysical Research Atmospheres, 2013, 118(2): 243-262. doi:  10.1029/2012JD017804
    [18] Benetti M, Reverdin G, Pierre C, et al. Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation. Journal of Geophysical Research Atmospheres, 2014, 119(2): 584-593. doi:  10.1002/2013JD020535
    [19] Steen-Larsen H C, Sveinbjörnsdottir A E, Peters A J, et al. Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements. Atmospheric Chemistry and Physics, 2014, 14(15): 7741-7756. doi:  10.5194/acp-14-7741-2014
    [20] Stewart M K. Stable isotope fractionation due to evaporation and isotopic exchange of falling water drops: Applications to atmospheric processes and evaporation of lakes. Journal of Geophysical Research, 1975, 80(9): 1133-1146. doi:  10.1029/JC080i009p01133
    [21] Salamalikis V, Argiriou A A, Dotsika E. Isotopic modeling of the sub-cloud evaporation effect in precipitation. Science of the Total Environment, 2016, 544: 1059-1072. doi:  10.1016/j.scitotenv.2015.11.072
    [22] Peng H, Mayer B, Norman A, et al. Modelling of hydrogen and oxygen isotope compositions for local precipitation. Tellus B Chemical and Physical Meteorology, 2005, 57(4): 273-282. doi:  10.3402/tellusb.v57i4.16545
    [23] Aggarwal P, Gat J, Froehlich K. Isotopes in the Water Cycle: Past, Present and Future of a Developing Science. Dordrencht: Springer, 2005.
    [24] Rozanski K, Araguás-Araguás L, Gonfiantini R. Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records, 1993, 78: 1-36.
    [25] Bedaso Z K, DeLuca N M, Levin N E, et al. Spatial and temporal variation in the isotopic composition of Ethiopian precipitation. Journal of Hydrology, 2019, 585: 124364.
    [26] 赵平, 周秀骥. 近40年我国东部降水持续时间和雨带移动的年代际变化. 应用气象学报, 2006, 17(5): 548-556. doi:  10.3969/j.issn.1001-7313.2006.05.004

    Zhao P, Zhou X J. Decadal variability of rainfall persistence time and rainbelt shift over eastern China in recent 40 years. Journal of Applied Meteorological Science, 2006, 17(5): 548-556. doi:  10.3969/j.issn.1001-7313.2006.05.004
    [27] Zhang Q, Xu C Y, Zhang Z, et al. Spatial and temporal variability of precipitation over China, 1951-2005. Theoretical Applied Climatology, 2009, 95(1/2): 53-68.
    [28] 梅海霞, 梁信忠, 曾明剑, 等. 2015—2017年夏季南京雨滴谱特征. 应用气象学报, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111

    Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. Journal of Applied Meteorological Science, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111
    [29] 杨舒楠, 端义宏. 台风温比亚(1818)降水及环境场极端性分析. 应用气象学报, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304

    Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. Journal of Applied Meteorological Science, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304
    [30] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因. 应用气象学报, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501

    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. Journal of Applied Meteorological Science, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [31] Gou J, Qu S, Shi P, et al. Application of stable isotope tracer to study runoff generation during different types of rainfall events. Water, 2018, 10(5): 538. doi:  10.3390/w10050538
    [32] Qu S, Chen X, Wang Y, et al. Isotopic characteristics of precipitation and origin of moisture sources in Hemuqiao Catchment, a small watershed in the lower reach of Yangtze River. Water, 2018, 10(5): 1170.
    [33] 胡勇博, 肖薇, 钱雨妃, 等. 水汽源地和局地蒸发对大气降水氢氧稳定同位素组分的影响. 环境科学, 2019, 40(2): 573-581. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201902009.htm

    Hu Y B, Xiao W, Qian Y F, et al. Effects of water vapor source and local evaporation on the stable hydrogen and oxygen isotopic compositions of precipitation. Environmental Science, 2019, 40(2): 573-581. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201902009.htm
    [34] 林光辉. 稳定同位素生态学. 北京: 高等教育出版社, 2013: 125-129.

    Lin G H. Stable Isotope Ecology. Beijing: China Higher Education Press, 2013: 125-129.
    [35] 章新平, 关华德, 张新主, 等. 季风区长沙站大气水汽和降水中δ18O的模拟. 冰川冻土, 2015, 37(1): 249-257. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201501028.htm

    Zhang X P, Guan H D, Zhang X Z, et al. Simulation of δ18O in atmospheric vapor and precipitation in Changsha Station, East Asian monsoon regions. Journal of Glaciology and Geocryology, 2015, 37(1): 249-257. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201501028.htm
    [36] 隋明浈, 高德强, 徐庆, 等. 江苏高邮大气降水清扬同位素特征及水汽源地. 应用生态学报, 2019, 30(6): 1823-1832.

    Sui M Z, Gao D Q, Xu Q, et al. Characteristics of hydrogen and oxygen isotopes in precipitation and moisture sources in Gaoyou, Jiangsu Province, China. Chinese Journal of Applied Ecology, 2019, 30(6): 1823-1832.
    [37] 张蓓蓓, 徐庆, 姜春武. 安庆地区大气降水氢氧同位素特征及水汽来源. 林业科学, 2017, 53(12): 20-29. doi:  10.11707/j.1001-7488.20171203

    Zhang B B, Xu Q, Jiang C W. Characteristics of δD and δ18O in the precipitation and evaporation sources in Anqing. Scientia Silvae Sinicae, 2017, 53(12): 20-29. doi:  10.11707/j.1001-7488.20171203
    [38] Wu H, Li X, Zhang J, et al. Stable isotopes of atmospheric water vapor and precipitation in the northeast Qinghai-Tibetan Plateau. Hydrological Processes, 2019, 33: 2997-3009. doi:  10.1002/hyp.13541
    [39] 刘涛, 端义宏, 冯佳宁, 等. 台风利奇马(1909)双眼墙特征及长时间维持机制. 应用气象学报, 2021, 32(3): 289-301. doi:  10.11898/1001-7313.20210303

    Liu T, Duan Y H, Feng J N, et al. Characteristics and mechanisms of long-lived concentric eyewalls in Typhoon Lekima in 2019. Journal of Applied Meteorological Science, 2021, 32(3): 289-301. doi:  10.11898/1001-7313.20210303
    [40] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606

    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. Journal of Applied Meteorological Science, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [41] 黄一民, 赵日梅, 宋献方, 等. 台风"海马"对洞庭湖流域降水同位素的影响研究. 地理科学, 2019, 39(7): 1184-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201907017.htm

    Huang Y M, Zhao R M, Song X F, et al. Precipitation isotopes formed by Typhoon "Haima" in the Dongting Lake Basin. Scientia Geographica Sinica, 2019, 39(7): 1184-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201907017.htm
    [42] 谭桂容, 范艺媛, 牛若芸. 江淮地区强降水分型及其环流演变. 应用气象学报, 2018, 29(4): 396-409. doi:  10.11898/1001-7313.20180402

    Tan G R, Fan Y Y, Niu R Y. Pattern classification of heavy rainfall in Jianghuai Region and associated circulations. Journal of Applied Meteorological Science, 2018, 29(4): 396-409. doi:  10.11898/1001-7313.20180402
    [43] 陈丽娟, 顾伟宗, 伯忠凯, 等. 黄淮地区夏季降水的统计降尺度预测. 应用气象学报, 2017, 28(2): 129-141. doi:  10.11898/1001-7313.20170201

    Chen L J, Gu W Z, Bo Z K, et al. The statistical downscaling method of summer rainfall prediction over the Huang-Huai Valley. Journal of Applied Meteorological Science, 2017, 28(2): 129-141. doi:  10.11898/1001-7313.20170201
    [44] Ying M, Zhang W, Yu H, et al. An overview of the China Meteorological Administration tropical cyclone database. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287-301. doi:  10.1175/JTECH-D-12-00119.1
    [45] Lu X Q, H Yu, M Ying, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Advances in Atmospheric Sciences, 2021, 38(4): 690-699. doi:  10.1007/s00376-020-0211-7
    [46] 陈衍婷, 杜文娇, 陈进生, 等. 厦门地区大气降水氢氧同位素组成特征及水汽来源探讨. 环境科学学报, 2016, 36(2): 667-674. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201602039.htm

    Chen Y T, Du W J, Chen J S. Composition of hydrogen and oxygen isotopic of precipitation and source apportionment of water vapor in Xiamen Area. Acta Scientiae Circumstantiae, 2016, 36(2): 667-674. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201602039.htm
    [47] Liu J, Song X, Yuan G, et al. Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources. Chinese Science Bulletin, 2010, 55: 200-211. doi:  10.1007/s11434-009-0202-7
    [48] Froehlich K, Gibson J J, Aggarwal P. Deuterium Excess in Precipitation and Its Climatological Significance. International Conference on Study of Environmental Change Using Isotope Techniques, 2001.
    [49] 王涛, 张洁茹, 刘笑, 等. 南京大气降水氧同位素变化及水汽来源分析. 水文, 2013, 33(4): 25-31. doi:  10.3969/j.issn.1000-0852.2013.04.005

    Wang T, Zhang J R, Liu X, et al. Analysis of oxygen isotope variation and water vapor source of atmospheric precipitation in Nanjing. Journal of China Hydrology, 2013, 33(4): 25-31. doi:  10.3969/j.issn.1000-0852.2013.04.005
    [50] Merlivat L, Jouzel J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal of Geophysical Research, 1979, 84(C8): 5029-5033. doi:  10.1029/JC084iC08p05029
    [51] Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 225-262. doi:  10.1146/annurev.earth.24.1.225
    [52] 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧同位素研究. 科学通报, 1983, 28(13): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198313010.htm

    Zheng S H, Hou F G, Ni B L. Study on hydrogen and oxygen isotopes of atmospheric precipitation in China. Scientific Bulletin, 1983, 28(13): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198313010.htm
    [53] Li Z, Feng Q, Wang Q J, et al. Contributions of local terrestrial evaporation and transpiration to precipitation using δ18O and D-excess as a proxy in Shiyang inland river basin in China. Global and Planetary Change, 2016, 146: 140-151. doi:  10.1016/j.gloplacha.2016.10.003
    [54] 陈柏丽, 陈少颖, 胡庆芳, 等. 江苏省太湖流域梅雨与台风遭遇规律研究. 江苏水利, 2019(2): 11-14;20. https://www.cnki.com.cn/Article/CJFDTOTAL-LSSL201902003.htm

    Chen B L, Chen S Y, Hu Q F, et al. Study on the regularity of Meiyu and Typhoon in Taihu Lake Basin of Jiangsu Province. Jiangsu Water Resources, 2019(2): 11-14;20. https://www.cnki.com.cn/Article/CJFDTOTAL-LSSL201902003.htm
    [55] 谢安, 毛江玉, 宋焱云, 等. 长江中下游地区水汽输送的气候特征. 应用气象学报, 2002, 13(1): 67-77. doi:  10.3969/j.issn.1001-7313.2002.01.008

    Xie A, Mao J Y, Song Y Y, et al. Climatological characteristics of moisture transport over Yangtze River Basin. Journal of Applied Meteorological Science, 2002, 13(1): 67-77. doi:  10.3969/j.issn.1001-7313.2002.01.008
    [56] 高宗军, 于晨, 田禹, 等. 中国大陆大气降水线斜率分区及其水汽来源研究. 地下水, 2017, 39(6): 149-152. doi:  10.3969/j.issn.1004-1184.2017.06.054

    Gao Z J, Yu C, Tian Y, et al. Slope zoning of atmospheric precipitation line and its water vapor source in mainland China. Ground Water, 2017, 39(6): 149-152. doi:  10.3969/j.issn.1004-1184.2017.06.054
  • 加载中
图(3) / 表(3)
计量
  • 摘要浏览量:  52
  • HTML全文浏览量:  3
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 修回日期:  2022-02-22
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回