Comparative Analysis on Dual Polarization Features of Two Severe Hail Supercells
-
摘要: 利用S波段双偏振天气雷达资料、探空和地面常规气象观测资料及灾情调查, 对2020年6月25日河北省蠡县和2021年7月9日山东省章丘的两次特大冰雹超级单体风暴双偏振特征进行对比。结果表明:两次超级单体风暴均发生在西北气流形势下, 章丘风暴具有较强的对流有效位能、较大的湿度和较高的湿球0℃层高度。蠡县风暴强度明显大于章丘风暴, 但差分反射率柱和比差分相移柱高度明显低于章丘风暴。蠡县风暴弱回波区上方存在深厚的强度超过65 dBZ强回波悬垂, 即悬垂的冰粒子循环增长产生较大的冰雹粒子, 大的冰雹粒子进入下降通道后, 再次产生明显增长且更加不规则, 导致更强的水平极化反射率因子和更小的相关系数。湿度的垂直分布是风暴发展强度的关键环境因素之一。蠡县超级单体风暴的产生环境非常干, 章丘超级单体风暴的产生环境相对较湿。Abstract: Using S-band dual-polarization weather radar data, sounding and ground meteorological observations, and disaster investigation reports, the similarity and difference of dual polarization parameters between Lixian and Zhangqiu supercells with hails above 50 mm are analyzed. Lixian supercell occurred at Lixian, Heibei Province on 25 June 2020, and Zhangqiu supercell occurred at Zhangqiu, Shandong Province on 9 July 2021. The results show that two supercells occurred in similar weather pattern (northwest flow) and large vertical wind shear environmental conditions which is conducive to the generation and maintenance of supercell storms, but Zhangqiu supercell is with stronger convective effective potential energy, larger humidity, and higher wet bulb 0℃ layer height. The main similarities include obvious differential reflectivity (ZDR) arcs along the forward flank of supercell storms, ZDR rings distributed around the updraft in the middle layer, and obvious ZDR columns and specific differential phase (KDP) columns above the 0℃ level. ZDR arcs are associated with large raindrops or small melting hail particles, ZDR columns mark the location of convective updrafts as large raindrops or wet ice particles are lofted to subfreezing temperatures, and KDP columns are dominated by large concentrations of small and medium-sized raindrops or melting ice particles. The similarity of the updraft structure plays a key role in the commonness or similarity of the polarization characteristics. The main differences are stronger reflectivity factor ZH, but lower height of ZDR column and KDP column in Lixian supercell. The strong overhang echo above the weak echo area in Lixian supercell contains large hail particles generated by cumulated growth. After the overhanging large hail particles enters the descending channel, they will produce obvious growth again and become more irregular, resulting in stronger horizontal polarization reflectivity factor ZH and smaller correlation coefficient. The obvious differential attenuation signature and nonuniform beam filling are observed in low level of Lixian supercell. The differential attenuation caused a decrease in the differential reflectivity as the beam propagates through large hail cores. Nonuniform beam filling is generated by inhomogeneous filling of different hydrometeor particles in the sampling volume. Under similar weather patterns, the distribution characteristic of humidity vertical profile is one of the key environmental factors of storm intensity. Lixian supercell storm occured in very low humidity vertical distribution environment, while Zhangqiu supercell storm occured in wetter environment.
-
Key words:
- supercell;
- dual-polarization;
- ZDR column;
- KDP column;
- difference
-
图 3 2020年6月25日18:12石家庄雷达不同仰角的水平极化反射率因子、平均径向速度、差分反射率、比差分相移和相关系数
(白色圆圈为中气旋)
Fig. 3 Horizontal polarization reflectivity, base velocity, differential reflectivity, specific differential phase and correlation coefficient with different elevation from Shijiazhuang radar at 1812 BT 25 Jun 2020
(the white cycle denotes mesocyclone)
图 4 2020年6月25日18:12石家庄雷达的水平极化反射率因子、差分反射率、比差分相移和相关系数沿74°径向垂直剖面
(粉色、红色、白色和蓝色水平实线分别为湿球0℃层、0℃层、-10℃层和-20℃层高度)
Fig. 4 Cross-sections of horizontal polarization reflectivity, differential reflectivity, specific differential phase and correlation coefficient along 74° radial direction from Shijiazhuang radar at 1812 BT 25 Jun 2020
(pink, red, white and blue horizontal solid lines denote heights of the wet bulb 0℃ layer, 0℃ layer, -10℃ layer and-20℃ layer, respectively)
图 5 2021年7月9日14:36济南雷达不同仰角的水平极化反射率因子、平均径向速度、差分反射率、比差分相移和相关系数
(白色圆圈为中气旋, 黑色箭头为风暴移动方向)
Fig. 5 Horizontal polarization reflectivity, base velocity, differential reflectivity, specific differential phase and correlation coefficient with different elevation from Jinan radar at 1436 BT 9 Jul 2021
(the white cycle denotes mesocyclone, the black arrow denotes the moving direction of supercell)
图 6 2021年7月9日14:36济南雷达水平极化反射率因子、差分反射率、比差分相移和相关系数沿90°径向垂直剖面
(粉色、红色、白色和蓝色水平实线分别为湿球0℃层高度、0℃层高度、-10℃层高度和-20℃层高度)
Fig. 6 Cross-sections of horizontal polarization reflectivity, differential reflectivity, specific differential phase and correlation coefficient along 90° radial direction from Jinan radar at 1436 BT 9 Jul 2021
(pink, red, white and blue horizontal solid lines denote heights of the wet bulb 0℃ layer, 0℃ layer, -10℃ layer and-20℃ layer, respectively)
表 1 邢台和章丘探空环境物理量
Table 1 Environmental physical parameters obtained by sounding of Xingtai and Zhangqiu
物理量 邢台
2020-06-25T08:00章丘
2021-07-09T08:00K指数/℃ 11 30 850 hPa和500 hPa的温差/℃ 29.6 29.3 抬升指数/℃ -1.7 -6.3 对流有效位能/(J·kg-1) 430(2400*) 2330(4550*) 对流抑制能量/(J·kg-1) 470 0 整层比湿积分/(g·kg-1) 2115 3206 0~6 km风切变/(m·s-1) 16.4 19.5 0~3 km风切变/(m·s-1) 10.6 16.6 500 hPa风速/(m·s-1) 15 11 500 hPa气温/℃ -11 -9 注:*表示订正后的对流有效位能。 表 2 蠡县和章丘超级单体风暴参数平均值
Table 2 Averaged values of storm parameters of supercells at Lixian and Zhangqiu
参数 蠡县强风暴 章丘强风暴 最大反射率因子/dBZ 77.1 65.6 最大反射率因子所在高度/km 5.1(-5℃高度) 4.6(-3℃高度) 风暴顶高/km 9.5(12.4*) 12.8(-47℃高度) 基于单体的垂直积分液态水含量/(kg·m-2) 68.0 86.3 差分反射率柱高度/km 8.0(-24℃高度) 11.4(-48℃高度) 比差分相移柱高度/km 7.7(-22℃高度) 9.0(-32℃高度) 最大旋转速度/(m·s-1) 19.4 20.2 最大旋转速度所在高度/km 5.8 5.1 风暴顶辐散强度/(m·s-1) 58.0 60.3 注:*表示沧州雷达探测到的蠡县超级单体风暴顶高度。 -
[1] Brande E A, Vivekanandan J, Tuttle J D, et al. A study of thunderstorm microphysics with multiparameter radar and aircraft observations.Mon Wea Rev, 1995, 123(11):3129-3143. doi: 10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2 [2] McCaul E W Jr, Weisman M L. The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon Wea Rev, 2001, 129(4): 664-687. doi: 10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2 [3] Beatty K, Rasmussen E N, Straka J M. The supercell spectrum. Part I: A review of research related to supercell precipitation morphology. Electron J Severe Storms Meteor, 2008, 3(4): 1-21. [4] Broeke V D, Matthew S. Effects of mid- and upper-level drying on microphysics of simulated supercell storms. Electron J Severe Storms Meteor, 2014, 9(3): 1-29. [5] Davenport C E, Parker M D. Impact of environmental heterogeneity on the dynamics of a dissipating supercell thunderstorm. Mon Wea Rev, 2015, 143(10): 4244-4277. doi: 10.1175/MWR-D-15-0072.1 [6] Bringi V N, Chandrasekar V. Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge: Cambridge University Press, 2001. [7] Kumjian M R, Ryzhkov A V. Polarimetric signatures in supercell thunderstorms. J Appl Meteor Climatol, 2008, 47(7): 1940-1961. doi: 10.1175/2007JAMC1874.1 [8] Kumjian M R. Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J Operational Meteor, 2013, 1(19): 226-242. doi: 10.15191/nwajom.2013.0119 [9] Herzegh P, Jameson A R. Observing precipitation through dual-polarization radar measurements. Bull Amer Meteor Soc, 1992, 73(9): 1365-1374. doi: 10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2 [10] Conway J W, Zrnic D S. A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon Wea Rev, 1993, 121(9): 2511-2528. doi: 10.1175/1520-0493(1993)121<2511:ASOEPA>2.0.CO;2 [11] Ryzhkov A V, Zhuravlyov V B, Rybakova N A. Preliminary results of X-band polarization radar studies of clouds and precipitation. J Atmos Oceanic Technol, 1994, 11(1): 132-139. doi: 10.1175/1520-0426(1994)011<0132:PROXBP>2.0.CO;2 [12] Kumjian M R, Ryzhkov A V, Melnikov V M, et al. Rapid-scan superresolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon Wea Rev, 2010, 138(10): 3762-3786. doi: 10.1175/2010MWR3322.1 [13] Kumjian M R, Ganson S M, Ryzhkov A V. Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J Atmos Sci, 2012, 69(12): 3471-3490. doi: 10.1175/JAS-D-12-067.1 [14] Kumjian M R, Ryzhkov A V. The impact of size sorting on the polarimetric radar variables. J Atmos Sci, 2012, 69(6): 2042-2060. doi: 10.1175/JAS-D-11-0125.1 [15] Dawson D T, Mansell E R, Jung Y, et al. Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J Atmos Sci, 2014, 71(1): 276-299. doi: 10.1175/JAS-D-13-0118.1 [16] Dawson D T, Mansell E R, Kumjian M R. Does wind shear cause hydrometeor size sorting?. J Atmos Sci, 2015, 72(1): 340-348. doi: 10.1175/JAS-D-14-0084.1 [17] Broeke V D, Matthew S. Polarimetric variability of classic supercell storms as a function of environment. J Appl Meteor Climatol, 2016, 55(9): 1907-1925. doi: 10.1175/JAMC-D-15-0346.1 [18] Bringi V N, Liu L, Kennedy P C, et al. Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor Atmos Phys, 1996, 59(1): 3-31. [19] Hubbert J C, Carey L D, Bolen S. CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J Appl Meteor, 1998, 37(8): 749-775. doi: 10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2 [20] Loney M L, Zrnić D S, Straka J M, et al. Enhanced polarimetric radar signatures above the melting level in a supercell storm. J Appl Meteor, 2002, 41(12): 1179-1194. doi: 10.1175/1520-0450(2002)041<1179:EPRSAT>2.0.CO;2 [21] Romine G S, Burgess D W, Wilhelmson R B. A dual-polarization-radarbased assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon Wea Rev, 2008, 136(8): 2849-2870. doi: 10.1175/2008MWR2330.1 [22] Kumjian M R. Principles and applications of dual-polarization weather radar. Part Ⅱ: Warm- and cold-season applications. J Operational Meteor, 2013, 1(20): 243-264. doi: 10.15191/nwajom.2013.0120 [23] 王洪, 吴乃庚, 万齐林, 等. 一次华南超级单体风暴的S波段偏振雷达观测分析. 气象学报, 2018, 76(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801007.htmWang H, Wu N G, Wan Q L, et al. Analysis of S-band polarimetric radar observations of a hailproducing supercell. Acta Meteor Sinica, 2018, 76(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801007.htm [24] 潘佳文, 魏鸣, 郭丽君, 等. 闽南地区大冰雹超级单体演变的双偏振特征分析. 气象, 2020, 46(12): 1608-1620. doi: 10.7519/j.issn.1000-0526.2020.12.008Pan J W, Wei M, Guo L J, et al. Dual-polarization radar characteristic analysis of the evolution of heavy hail supercell in Southern Fujian. Meteor Mon, 2020, 46(12): 1608-1620. doi: 10.7519/j.issn.1000-0526.2020.12.008 [25] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606 [26] 高丽, 潘佳文, 蒋璐璐, 等. 一次长生命史超级单体降雹演化机制及双偏振雷达回波分析. 气象, 2021, 47(2): 170-182. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202102004.htmGao L, Pan J W, Jiang L L, et al. Analysis of evolution mechanism and characteristics of dual polarization radar echo of a hail caused by long life supercell. Meteor Mon, 2021, 47(2): 170-182. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202102004.htm [27] 贺晓露, 杨涛, 李格, 等. 鄂北一次超级对流单体的双偏振雷达特征分析. 气象科技, 2021, 49(6): 913-922. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202106012.htmHe X L, Yang T, Li G, et al. Dual-polarization characteristics analysis of a supercell in Northern Hubei. Meteor Sci Technol, 2021, 49(6): 913-922. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202106012.htm [28] 刁秀广, 郭飞燕. 2019年8月16日诸城超级单体风暴双偏振参量结构特征分析. 气象学报, 2021, 79(2): 181-195. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102001.htmDiao X G, Guo F Y. Analysis of polarimetric signatures in the supercell thunderstorm occurred in Zhucheng on 16 August 2019. Acta Meteor Sinica, 2021, 79(2): 181-195. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102001.htm [29] 刁秀广, 杨传凤, 张骞, 等. 二次长寿命超级单体风暴参数与ZDR柱演变特征分析. 高原气象, 2021, 40(3): 580-589. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202103011.htmDiao X G, Yang C F, Zhang Q, et al. Analysis on the evolution characteristics of storm parameters and ZDR column for two long life supercells. Plateau Meteor, 2021, 40(3): 580-589. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202103011.htm [30] Balakrishnan N, Zrnic D S. Use of polarization to characterize precipitation and discriminate large hail. J Atmos Sci, 47(13): 1525-1540. doi: 10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2 [31] 徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别算法的参数改进. 应用气象学报, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309 [32] 杨磊, 贺宏兵, 杨波, 等. 基于S波段双线偏振天气雷达的降水粒子相态识别. 气象与环境学报, 2019, 35(4): 127-132. doi: 10.3969/j.issn.1673-503X.2019.04.018Yang L, He H B, Yang B, et al. Identification of hydrometeors based on S-band dual-polarimetric radar measurement. J Meteor Environ, 2019, 35(4): 127-132. doi: 10.3969/j.issn.1673-503X.2019.04.018 [33] 吴翀, 刘黎平, 仰美霖, 等. X波段双偏振雷达相态识别与拼图的关键技术. 应用气象学报, 2021, 32(2): 200-216. doi: 10.11898/1001-7313.20210206Wu C, Liu L P, Yang M L, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. doi: 10.11898/1001-7313.20210206 [34] 潘佳文, 高丽, 魏鸣, 等. 基于S波段双偏振雷达观测的雹暴偏振特征分析. 气象学报, 2021, 79(1): 168-180. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101012.htmPan J W, Gao L, Wei M, et al. Analysis of the polarimetric characteristics of hail storm from S band dual polarization radar observations. Acta Meteor Sinica, 2021, 79(1): 168-180. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101012.htm [35] 王俊, 王文青, 王洪, 等. 山东北部一次夏末雹暴地面降水粒子谱特征. 应用气象学报, 2021, 32(3): 370-384. doi: 10.11898/1001-7313.20210309Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi: 10.11898/1001-7313.20210309 [36] 李哲, 吴翀, 刘黎平, 等. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报, 2022, 33(1): 16-28. doi: 10.11898/1001-7313.20220102Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi: 10.11898/1001-7313.20220102 [37] 郑永光, 陶祖钰, 俞小鼎. 强对流天气预报的一些基本问题. 气象, 2017, 43(6): 641-652. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201706001.htmZheng Y G, Tao Z Y, Yu X D. Some essential issues of severe convective weather forecasting. Meteor Month, 2017, 43(6): 641-652. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201706001.htm [38] 王黉, 李英, 文永仁. 川藏高原一次混合型强对流天气的观测特征. 应用气象学报, 2021, 32(5): 567-579. doi: 10.11898/1001-7313.20210505Wang H, Li Y, Wen Y R. Observational characteristics of a hybrid severe convective event in the Sichuan-Tibet Region. J Appl Meteor Sci, 2021, 32(5): 567-579. doi: 10.11898/1001-7313.20210505 [39] 高晓梅, 俞小鼎, 王令军, 等. 山东半岛两次海风锋引起的强对流天气对比. 应用气象学报, 2018, 29(2): 245-256. doi: 10.11898/1001-7313.20180210Gao X M, Yu X D, Wang L J, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. doi: 10.11898/1001-7313.20180210 [40] Kumjian M R. Principles and applications of dual-polarization weather radar. Part Ⅲ: Artifacts. J Operational Meteor, 2013, 1(21): 265-274. doi: 10.15191/nwajom.2013.0121 [41] 刁秀广. 2020年5月17日和6月1日山东强冰雹风暴双极化特征分析. 海洋气象学报, 41(1): 68-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202101007.htmDiao X G. Dual-polarization characteristics of severe hail storms in Shandong on 17 May and 1 June 2020. J Marine Meteor, 2021, 41(1): 68-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202101007.htm [42] 王一童, 王秀明, 俞小鼎. 产生致灾大风的超级单体回波特征. 应用气象学报, 2022, 33(2): 180-191. doi: 10.11898/1001-7313.20220205Wang Y T, Wang X M, Yu X D. Radar characteristics of straight-line damaging wind producing supercell storms. J Appl Meteor Sci, 2022, 33(2): 180-191. doi: 10.11898/1001-7313.20220205 [43] 郭欣, 郭学良, 陈宝君, 等. 一次大冰雹形成机制的数值模拟. 应用气象学报, 2019, 30(6): 651-664. doi: 10.11898/1001-7313.20190602Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi: 10.11898/1001-7313.20190602