留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一次飞机严重积冰的天气条件和云微物理特征

王泽林 周旭 吴俊辉 李佰平 蔺玉洁 闫文辉 张莹

王泽林, 周旭, 吴俊辉, 等. 一次飞机严重积冰的天气条件和云微物理特征. 应用气象学报, 2022, 33(5): 555-567. DOI:  10.11898/1001-7313.20220504..
引用本文: 王泽林, 周旭, 吴俊辉, 等. 一次飞机严重积冰的天气条件和云微物理特征. 应用气象学报, 2022, 33(5): 555-567. DOI:  10.11898/1001-7313.20220504.
Wang Zelin, Zhou Xu, Wu Junhui, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. DOI:  10.11898/1001-7313.20220504.
Citation: Wang Zelin, Zhou Xu, Wu Junhui, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. DOI:  10.11898/1001-7313.20220504.

一次飞机严重积冰的天气条件和云微物理特征

DOI: 10.11898/1001-7313.20220504
资助项目: 

国家重点研发计划 2019YFC1510305

详细信息
    通信作者:

    周旭, 邮箱:zhouxu@cma.gov.cn

Weather Conditions and Cloud Microphysical Characteristics of an Aircraft Severe Icing Process

  • 摘要: 利用2021年2月28日机载探测资料, 结合欧洲中期天气预报中心ERA5再分析资料、陕西省延安站探空资料, 分析飞机发生严重积冰的天气背景和云的宏微观结构特征。此次严重积冰天气是受高空槽、低空切变线、低空急流和地面冷锋共同影响的结果。ERA5再分析资料表明:过冷水大值区主要分布于锋区前部暖侧的700 hPa至600 hPa高度。探空资料表明:飞机探测区环境温度为-9~-3℃, 温度露点差为0℃, 具有发生严重积冰的温度和湿度条件。飞机遭遇严重积冰期间环境温度为-8~-5℃, 云粒子探头观测的液态水含量平均为0.35 g·m-3, 最大为0.7 g·m-3;总水含量仪观测的液态水含量平均为0.5 g·m-3, 最大为0.85 g·m-3, 有11 min大于0.45 g·m-3;云粒子中值体积直径平均为20.3 μm, 云粒子数浓度平均为149.3 cm-3;云粒子数浓度由低层到高层呈增大趋势, 而云粒子中值体积直径变化趋势与之相反。计算表明:国王350飞机在穿云作业时, 云中过冷水含量分别高于0.04 g·m-3, 0.15 g·m-3和0.45 g·m-3时可能遭遇轻度积冰、中度积冰和严重积冰。
  • 图  1  探测飞行情况

    (a)飞行轨迹,(b)飞行高度-时间变化

    Fig. 1  Detection of flight

    (a)flight track, (b)altitude-time variation

    图  2  2021年2月28日08:00天气图

    (黑色实线代表位势高度, 单位:dagpm;黑色虚线代表等温线,单位:℃;黑色三角代表观测到严重积冰区域)

    Fig. 2  Weather chart at 0800 BT 28 Feb 2021

    (the black solid line denotes the geopotential height, unit:dagpm;the black dashed line denotes the isotherm, unit:℃;the black triangle denotes the area of severe icing)

    图  3  2021年2月28日08:00延安站探空

    Fig. 3  Sounding of Yan'an Station at 0800 BT 28 Feb 2021

    图  4  2021年2月28日09:00液态水含量垂直分布

    (黑色阴影为地形;紫色矩形框表示飞机观测到严重积冰区域;填色表示液态水含量;红色虚线表示等温线,单位:℃;黑色虚线表示垂直速度,单位:Pa·s-1)
    (a)沿36.25°N纬向剖面,(b)沿111.25°E经向剖面

    Fig. 4  Distribution of liquid water content at 0900 BT 28 Feb 2021

    (the black denotes terrain;the purple box denotes the area of severe icing;the colour shaded denotes the liquid water content;the red dashed line denotes the isotherm, unit:℃;the black dashed line denotes vertical velocity, unit:Pa·s-1)
    (a)the zonal section along 36.25°N, (b)the meridional section along 111.25°E

    图  5  机载观测物理量分布

    Fig. 5  The distribution of aircraft measurements

    图  6  第1阶段飞机观测物理量垂直分布

    Fig. 6  Vertical distribution of aircraft measurements in Phase 1

    图  7  第2阶段飞机观测物理量垂直分布

    Fig. 7  Vertical distribution of aircraft measurements in Phase 2

    图  8  暴露距离及积冰速率

    (a)总水含量仪观测的液态水含量(WCM-LWC) 随暴露距离变化(黑色虚线表示积冰强度阈值),(b)积冰速率(黑色虚线表示时间阈值)

    Fig. 8  Exposure distance and icing rate

    (a)WCM-LWC varying with exposure distance (the dashed line denotes the threshold of icing intensity), (b)icing rate (the dashed line denotes the threshold of time)

    表  1  机载测量设备功能及参数

    Table  1  Airborne instrumentations and main parameters

    仪器名称 设备功能 测量范围 精度
    云粒子探头 测量云滴粒子 2~50 μm 1~12通道:1 μm;13~30通道:2 μm
    综合气象要素测量系统 测量温度,风速,风向,经纬度,海拔 海拔:0~15 km温度:-20~+40℃ 测温:0.05℃;风速:0.5 m·s-1
    总水含量仪 测量液态水含量,总水含量 0~10 g·m-3 0.001 g·m-3
    下载: 导出CSV
  • [1] Gultepe I, Sharman R, Williams P D, et al. A review of high impact weather for aviation meteorology. Pure Appl Geophys, 2019, 176(5): 1869-1921. doi:  10.1007/s00024-019-02168-6
    [2] Federal Aviation Administration, Federal Aviation Regulations(FAR). Part 25: Airworthiness Standards: Transport Category Airplanes. FAA, 2017.
    [3] 中国民用航空局. CCAR 25-R4: 中国民用航空规章第25部: 运输类飞机适航标准. 北京: 中国民用航空总局, 2011.

    Civil Aviation Administration of China. CCAR 25-R4: Chinese Civil Aviation Regulation No. 25: Airworthiness Standards for Transport Aircraft Beijing: Civil Aviation Administration of China, 2011.
    [4] Marwitz J. Comments on "characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification". J Appl Meteor Climatol, 2013, 52(7): 1670-1672. doi:  10.1175/JAMC-D-12-096.1
    [5] Schack C J, Christe K O. Forecasters' Guide on Aircraft Icing. Air Weather Service Rep, AWS/TR-80/001, 1980: 1-58.
    [6] 李子良. 飞机积冰的气象条件分析. 四川气象, 1999, 9(3): 56-57. doi:  10.3969/j.issn.1674-2184.1999.03.015

    Li Z L. Analysis of meteorological conditions for aircraft icing. J Sichuan Meteor, 1999, 9(3): 56-57. doi:  10.3969/j.issn.1674-2184.1999.03.015
    [7] 庞朝云, 张逸轩. 甘肃中部地区飞机积冰的气象条件分析. 干旱气象, 2008, 26(3): 53-56. doi:  10.3969/j.issn.1006-7639.2008.03.010

    Pang Z Y, Zhang Y X. Weather conditions of aircraft icing in the middle part of Gansu Province. Arid Meteor, 2008, 26(3): 53-56. doi:  10.3969/j.issn.1006-7639.2008.03.010
    [8] 刘开宇, 申红喜, 李秀连, 等. "04.12.21"飞机积冰天气过程数值特征分析. 气象, 2005, 31(12): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200512004.htm

    Liu K Y, Shen H X, Li X L, et al. Analysis of an aircraft icing event in Taiyuan airport. Meteor Mon, 2005, 31(12): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200512004.htm
    [9] 迟竹萍. 飞机空中积冰的气象条件分析及数值预报试验. 气象科技, 2007, 35(5): 714-718. doi:  10.3969/j.issn.1671-6345.2007.05.021

    Chi Z P. Statistical analysis and numerical prediction experiment of weather conditions for aircraft icing. Meteor Sci Technol, 2007, 35(5): 714-718. doi:  10.3969/j.issn.1671-6345.2007.05.021
    [10] Rasmussen R, Politovich M, Marwitz J, et al. Winter Icing and Storms Project(WISP). Bull Amer Meteor Soc, 1992, 73(7): 951-976. doi:  10.1175/1520-0477(1992)073<0951:WIASP>2.0.CO;2
    [11] Cober S G, Isaac G A, Strapp J W. Aircraft icing measurements in east coast winter storms. J Appl Meteor Climatol, 1995, 34(1): 88-100. doi:  10.1175/1520-0450-34.1.88
    [12] Miller D, Bernstein B, McDonough B, et al. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research-Summary of Winter 96-97 Flight Operations//36th AIAA Aerospace Sciences Meeting and Exhibit, 1998. DOI: 10.2514/6.1998-577.
    [13] Isaac G A, Cober S G, Strapp J W, et al. Recent Canadian research on aircraft in-flight icing. Can Aeronaut Space J, 2001, 47(3): 213-221.
    [14] Isaac G, Cober S, Strapp J, et al. Preliminary Results from the Alliance Icing Research Study(Airs)//39th Aerospace Sciences Meeting and Exhibit, 2001. DOI: 10.2514/6.2001-393.
    [15] Isaac G, Ayers J, Bailey M, et al. First Results from the Alliance Icing Research Study Ⅱ//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005. DOI: 10.2514/6.2005-252.
    [16] Bernstein B C, Wolff C A, McDonough F. An inferred climatology of icing conditions aloft, including supercooled large drops. Part Ⅰ: Canada and the continental United States. J Appl Meteor Climatol, 2007, 46(11): 1857-1878. doi:  10.1175/2007JAMC1607.1
    [17] Bernstein B C, Le Bot C. An inferred climatology of icing conditions aloft, including supercooled large drops. Part Ⅱ: Europe, Asia, and the globe. J Appl Meteor Climatol, 2009, 48(8): 1503-1526. doi:  10.1175/2009JAMC2073.1
    [18] Bernstein B, Campo W, Algodal L, et al. The Embraer-170 and -190 Natural Icing Flight Campaigns: Keys to Success//44th AIAA Aerospace Sciences Meeting and Exhibit, 2006. DOI: 10.2514/6.2006-264.
    [19] DiVito S, Bernstein B C, Sims D L, et al. In-cloud Icing and Large-drop Experiment(ICICLE). Part Ⅰ: Overview//100th American Meteorological Society Annual Meeting. AMS, 2020. DOI: 10.21949/1524472.
    [20] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601

    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [21] 郭学良, 方春刚, 卢广献, 等. 2008—2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601

    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [22] 刘晓璐, 张元, 刘东升. 机载热线含水量仪探测数据校验方法. 应用气象学报, 2021, 32(6): 748-758. doi:  10.11898/1001-7313.20210609

    Liu X L, Zhang Y, Liu D S. Calibration for data observed by airborne hot-wire liquid water content sensor. J Appl Meteor Sci, 2021, 32(6): 748-758. doi:  10.11898/1001-7313.20210609
    [23] 李宏宇, 周旭, 张荣, 等. 不同机载设备观测的气象要素与飞行参数对比分析. 气象, 2020, 46(9): 1143-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009002.htm

    Li H Y, Zhou X, Zhang R, et al. Comparison and analysis of several meteorological elements and flight parameters observed from different airborne detection instruments. Meteor Mon, 2020, 46(9): 1143-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009002.htm
    [24] 张荣, 李宏宇, 周旭, 等. DMT机载云粒子图像形状识别及其应用. 应用气象学报, 2021, 32(6): 735-747. doi:  10.11898/1001-7313.20210608

    Zhang R, Li H Y, Zhou X, et al. Shape recognition of DMT airborne cloud particle images and its application. J Appl Meteor Sci, 2021, 32(6): 735-747. doi:  10.11898/1001-7313.20210608
    [25] Zhang R, Zhou X, Li H Y, et al. Revisiting the size of nonspherical particles recorded by optical array probes with a new method based on the convex hull. Atmos Ocean Sci Lett, 2022, 15(3): 100136. doi:  10.1016/j.aosl.2021.100136
    [26] 刘春文, 郭学良, 段玮, 等. 云南省积层混合云微物理特征飞机观测. 应用气象学报, 2022, 33(2): 142-154. doi:  10.11898/1001-7313.20220202

    Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi:  10.11898/1001-7313.20220202
    [27] 王烁, 张佃国, 王文青, 等. 初冬一次层状云较弱云区垂直结构的飞机观测. 应用气象学报, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604

    Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604
    [28] 程鹏, 罗汉, 常祎, 等. 祁连山一次地形云降水微物理特征飞机观测. 应用气象学报, 2021, 32(6): 691-705. doi:  10.11898/1001-7313.20210605

    Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi:  10.11898/1001-7313.20210605
    [29] 常祎, 郭学良, 唐洁, 等. 青藏高原夏季对流云微物理特征和降水形成机制. 应用气象学报, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607

    Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607
    [30] 李军霞, 李培仁, 陶玥, 等. 山西春季层状云系数值模拟及与飞机探测对比. 应用气象学报, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103

    Li J X, Li P R, Tao Y, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103
    [31] 朱士超, 郭学良. 华北积层混合云中冰晶形状、分布与增长过程的飞机探测研究. 气象学报, 2014, 72(2): 366-389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402013.htm

    Zhu S C, Guo X L. Ice crystal habits, distribution and growth process in stratiform clouds with embedded convection in North China: Aircraft measurements. Acta Meteor Sinica, 2014, 72(2): 366-389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402013.htm
    [32] 杨洁帆, 胡向峰, 雷恒池, 等. 太行山东麓层状云微物理特征的飞机观测研究. 大气科学, 2021, 45(1): 88-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101006.htm

    Yang J F, Hu X F, Lei H C, et al. Airborne observations of microphysical characteristics of stratiform cloud over eastern side of Taihang Mountains. Chinese J Atmos Sci, 2021, 45(1): 88-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101006.htm
    [33] 陈跃, 马培民, 游来光. 飞机积冰环境下的液态水含量及滴谱个例分析. 气象, 1989, 15(4): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198904006.htm

    Chen Y, Ma P M, You L G. A case study of droplet spectra and liquid water content measurements in aircraft icing environments. Meteor Mon, 1989, 15(4): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198904006.htm
    [34] 李勤红, 乔建军, 陈增江. Y7-200a飞机自然结冰飞行试验. 飞行力学, 1999, 17(2): 64-69. doi:  10.3969/j.issn.1002-0853.1999.02.012

    Li Q H, Qiao J J, Chen Z J. Natural icing flight test for Y7-200a aircraft. Fligh Dynam, 1999, 17(2): 64-69. doi:  10.3969/j.issn.1002-0853.1999.02.012
    [35] 王泽林, 倪洪波, 裴昌春. 我国干旱地区一次直升机自然结冰试飞天气个例分析. 沙漠与绿洲气象, 2020, 14(2): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX202002009.htm

    Wang Z L, Ni H B, Pei C C. A case study of helicopter natural icing flight test in arid areas of China. Desert Oasis Meteor, 2020, 14(2): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX202002009.htm
    [36] 孙晶, 蔡淼, 王飞, 等. 安庆地区一次飞机积冰的气象条件分析. 气象, 2019, 45(10): 1341-1351. doi:  10.7519/j.issn.1000-0526.2019.10.001

    Sun J, Cai M, Wang F, et al. A case study of aircraft icing conditions in Anqing area. Meteor Mon, 2019, 45(10): 1341-1351. doi:  10.7519/j.issn.1000-0526.2019.10.001
    [37] Che Y, Zhang J, Fang C, et al. Aerosol and cloud properties over a coastal area from aircraft observations in Zhejiang, China. Atmos Environ, 2021, 267: 118771. doi:  10.1016/j.atmosenv.2021.118771
    [38] 蔡兆鑫, 蔡淼, 李培仁, 等. 华北地区一次气溶胶与浅积云微物理特性的飞机观测研究. 大气科学, 2021, 45(2): 393-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202102011.htm

    Cai Z X, Cai M, Li P R, et al. An in-situ case study on micro physical properties of aerosol and shallow cumulus clouds in North China. Chinese J Atmos Sci, 2021, 45(2): 393-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202102011.htm
    [39] Poore K D, Wang J, Rossow W B. Cloud layer thicknesses from a combination of surface and upper-air observations. J Climate, 1995, 8(3): 550-568. doi:  10.1175/1520-0442(1995)008<0550:CLTFAC>2.0.CO;2
    [40] Bernstein B C, Rasmussen R M, McDonough F, et al. Keys to differentiating between small- and large-drop icing conditions in continental clouds. J Appl Meteor Climatol, 2019, 58(9): 1931-1953. doi:  10.1175/JAMC-D-18-0038.1
    [41] Wolff C, Mcdonough F, Bernstein B. An Examination of Aircraft Icing Conditions Associated with Cold Fronts. SAE Technical Paper, 2011-38-0020, 2011.
    [42] 王黎俊, 银燕, 李仑格, 等. 三江源地区秋季典型多层层状云系的飞机观测分析. 大气科学, 2013, 37(5): 1038-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201305007.htm

    Wang L J, Yin Y, Li L G, et al. Analyses on typical autumn multi-layer stratiform clouds over the Sanjiangyuan National Nature Reserve with airborne observations. Chinese J Atmos Sci, 2013, 37(5): 1038-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201305007.htm
    [43] Jeck R K. A History and Interpretation of Aircraft Icing Intensity Definitions and FAA Rules for Operating in Icing Conditions. Flight Control Systems, 2001.
    [44] Jeck R. A Workable, Aircraft-specific Icing Severity Scheme//36th AIAA Aerospace Sciences Meeting and Exhibit, 1998, DOI: 10.2514/6.1998-94.
  • 加载中
图(8) / 表(1)
计量
  • 摘要浏览量:  970
  • HTML全文浏览量:  128
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 修回日期:  2022-07-07
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回