An Improvement of the Linearized Planetary Boundary Layer Parameterization Scheme for CMA-GFS 4DVar
-
摘要: 持续发展和优化切线性模式的线性化物理过程,保持与非线性模式一致是改善四维变分同化(4DVar)分析和预报效果的有效方法之一。目前业务系统的CMA-GFS模式采用基于Charney-Phillips(C-P)跳点的边界层参数化方案,而CMA-GFS 4DVar系统中采用基于Lorenz跳点的边界层线性化方案。为改善CMA-GFS 4DVar系统的边界层分析和预报效果,基于C-P跳点的边界层参数化方案研发了新边界层线性化方案,并通过对方案中地表热量通量和水汽通量扰动、自由大气的理查逊系数扰动、边界层的热量和动量交换系数扰动等进行更加精细地规约化约束,在确保CMA-GFS切线性和伴随模式稳定运行的情况下,减少线性化过程对切线性模式预报精度的影响。切线性近似试验检验表明:相较于原方案,新边界层线性化方案可以减少边界层位温和比湿的相对误差,最大可减少10%。批量4DVar循环同化试验表明:新边界层线性化方案可以有效改善切线性模式对低层位温、风场和比湿扰动的预报精度,减少4DVar内外循环目标泛函的相对差异,并提高700 hPa位势高度的可预报时效。Abstract: By continuously developing and optimizing the linearized physical process of the tangent linear model and keeping it consistent with the nonlinear model, the analysis and forecasting performance of four-dimensional variational data assimilation (4DVar) of China Meteorological Administration Global Forecast System (CMA-GFS) can be effectively improved. Currently, the planetary boundary layer (PBL) parameterization scheme adopted by CMA-GFS model is based on Charney-Phillips (C-P) grid, while the linearization PBL parameterization scheme used in CMA-GFS 4DVar is on the basis of Lorenz grid. The zigzag noise of the temperature and moisture in the boundary layer is removed and the correspondent profiles appear to be smooth with C-P PBL parameterization scheme, and the forecast errors of CMA-GFS model are effectively reduced. To improve the analysis and prediction effects of 4DVar on the boundary layer, a new linearized PBL parameterization scheme based on the C-P grid (TL_NMRF_CP) is developed. By making more refined regularization constraints on the disturbances of the surface heat flux, the surface water vapor flux, Richardson coefficient of the free atmosphere, the heat and momentum exchange coefficient of the boundary layer, the influence of the linearization process on the accuracy of the tangent linear approximation is reduced while ensuring stable operation of the tangent linear and adjoint models. Two tests are designed, one is TL_MRF test based on the original TL_MRF scheme and the other is TL_NMRF_CP test based on the TL_NMRF_CP scheme. The tangent linear approximation tests show that, compared with the original scheme, the TL_NMRF_CP scheme can improve the tangent linear model forecast accuracy on the boundary layer, reduce the relative error of the potential temperature of the boundary layer by up to 10%, reduce the relative error of the specific humidity by 5% at the most, and reduce the relative error of zonal wind by up to 12%. In the minimization process of CMA-GFS 4DVar, the TL_NMRF_CP scheme can reduce the relative difference of the cost functions caused by different resolutions between inner and outer loops of the 4DVar system, and improve the convergence efficiency of 4DVar. The batch cycle assimilation forecast experiments of CMA-GFS 4DVar further verify that the TL_NMRF_CP scheme can provide better analysis and prediction results. The TL_NMRF_CP scheme has also been applied to CMA-GFS 4DVar operation system.
-
表 1 CMA-GFS 4DVar试验设置
Table 1 Setting of CMA-GFS 4DVar test
设置 详细配置 水平分辨率 外循环为1.0°×1.0°,内循环为1.0°×1.0° 模式积分步长 外循环为450 s,内循环为900 s 垂直层数 87层 同化时间窗长度 6 h 观测剖分间隔 30 m 线性化物理过程 垂直扩散、地形阻塞流拖曳、对流参数化、大尺度凝结 极小化算法 有预调节的Lanczos-CG算法 重力波控制 数字滤波弱约束 最大极小化迭代次数 50次 -
[1] Bauer P, Thorpe A, Brunet G.The quiet revolution of numerical weather prediction.Nature, 2015, 525(7567):47-55. doi: 10.1038/nature14956 [2] 沈学顺, 王建捷, 李泽椿等. 中国数值天气预报的自主创新发展. 气象学报, 2020, 78(3): 451-476.Shen X H, Wang J J, Li Z C, et al. China's independent and innovative development of numerical weather prediction. Acta Meteor Sinica, 2020, 78(3): 451-476. [3] Rabier F, Järvinen H, Klinker E, et al. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart J Roy Meteor Soc, 2000, 126(564): 1143-1170. doi: 10.1002/qj.49712656415 [4] Klinker E, Rabier F, Kelly G, et al. The ECMWF operational implementation of four-dimensional variational assimilation. Ⅲ: Experimental results and diagnostics with operational configuration. Quart J Roy Meteor Soc, 2000, 126(564): 1191-1215. doi: 10.1002/qj.49712656417 [5] Gauthier P, Tanguay M, Laroche S, et al. Extension of 3DVar to 4DVar: Implementation of 4DVar at the meteorological service of Canada. Mon Wea Rev, 2010, 135(6): 2339-2354. [6] Rawlins F, Ballard S P, Bovis K J, et al. The Met Office global four-dimensional variational data assimilation scheme. Quart J Roy Meteor Soc, 2010, 133(623): 347-362. [7] Zhang L, Liu Y Z, Liu Y, et al. The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart J Roy Meteor Soc, 2019, 145(722): 1-15. [8] Courtier P, Thépaut J N, Hollingsworth A. A strategy for operational implementation of 4DVar, using an incremental approach. Quart J Roy Meteor Soc, 1994, 120(519): 1367-1387. doi: 10.1002/qj.49712051912 [9] Errico R M. What is an adjoint model?. Bull Amer Meteor Soc, 1997, 78(11): 2577-2592. doi: 10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2 [10] 刘永柱, 张林, 金之雁. GRAPES全球切线性和伴随模式的调优. 应用气象学报, 2017, 28(1): 62-71. doi: 10.11898/1001-7313.20170106Liu Y Z, Zhang L, Jin Z Y. The optimization of GRAPES global tangent linear model and adjoint model. J Appl Meteor Sci, 2017, 28(1): 62-71. doi: 10.11898/1001-7313.20170106 [11] Mahfouf J F. Influence of physical processes on the tangent-linear approximation. Tellus A, 2000, 51(2): 147-166. [12] 龚建东, 刘永柱, 张林. 面向四维变分资料同化的NSAS积云深对流参数化方案的简化及线性化研究. 气象学报, 2019, 77(4): 595-616. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904001.htmGong J D, Liu Y Z, Zhang L. A study on simplification and linearization of NSAS deep convection cumulus parameterization scheme for 4D-Var. Acta Meteor Sinica, 2019, 77(4): 595-616. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904001.htm [13] 刘永柱, 龚建东, 张林等. 线性化物理过程对CMA-GFS 4DVar同化的影响. 气象学报, 2019, 77(2): 196-209. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902003.htmLiu Y Z, Gong J D, Zhang L, et al. Influence of linearized physical processes on the CMA-GFS 4DVar. Acta Meteor Sinica, 2019, 77(2): 196-209. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902003.htm [14] Zou X. Tangent linear and adjoint of "on-off" processes and their feasibility for use in 4-dimensional variational data assimilation. Tellus A, 1997, 49(1): 3-31. doi: 10.3402/tellusa.v49i1.12209 [15] Holdaway D, Errico R. Using jacobian sensitivities to assess a linearization of the relaxed arakawa-schubert convection scheme. Quart J Roy Meteor Soc, 2014, 40(681): 1319-1332. [16] 沈学顺, 苏勇, 胡江林, 等. GRAPES_GFS全球中期预报系统的研发和业务化. 应用气象学报, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101 [17] 王金成, 陆慧娟, 韩威, 等. GRAPES全球三维变分同化业务系统性能. 应用气象学报, 2017, 28(1): 11-24. doi: 10.11898/1001-7313.20170102Wang J C, Lu H J, Han W, et al. Improvements and performances of the operational GRAPES_GFS 3Dvar system. J Appl Meteor Sci, 2017, 28(1): 11-24. doi: 10.11898/1001-7313.20170102 [18] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601 [19] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502 [20] Charney J G, Phillips N A. Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J Atmos Sci, 1953, 10(2): 71-99. [21] Han J, Pan H L. Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea Forecasting, 2010, 26: 520-533. [22] Lorenz E N. Energy and numerical weather prediction. Tellus, 1960, 12: 364-373. [23] Chen J, Ma Z, Li Z, et al. Vertical diffusion and cloud scheme coupling to the Charney-Phillips vertical grid in CMA-GFS global forecast system. Quart J Roy Meteor Soc, 2020, 146(730): 2191-2204. [24] 陈炯, 马占山, 苏勇. 适用于CMA-GFS模式C-P边界层方案的设计和实现. 应用气象学报, 2017, 28(1): 52-61. doi: 10.11898/1001-7313.20170105Chen J, Ma Z S, Su Y. Boundary layer coupling to Charney-Phillips vertical grid in CMA-GFS Model. J Appl Meteor Sci, 2017, 28(1): 52-61. doi: 10.11898/1001-7313.20170105 [25] 张萌, 于海鹏, 黄建平, 等. GRAPES_GFS 2.0模式非系统误差评估. 应用气象学报, 2019, 30(3): 332-344. doi: 10.11898/1001-7313.20190307Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi: 10.11898/1001-7313.20190307 [26] Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev, 1996, 124(10): 2322-2339. [27] 张林, 朱宗申. GRAPES模式切线性垂直扩散方案的误差分析和改进. 应用气象学报, 2008, 19(2): 194-200. http://qikan.camscma.cn/article/id/20080235Zhang L, Zhu Z S. Estimation of linearized vertical diffusion scheme in GRAPES model. J Appl Meteor Sci, 2008, 19(2): 194-200. http://qikan.camscma.cn/article/id/20080235 [28] Liu Y Z, Zhang L, Lian Z H. Conjugate gradient algorithm in the four-dimensional variational data assimilation system in CMA-GFS. J Meteor Res, 2018, 32(6): 974-984. [29] 张林, 刘永柱. GRAPES全球四维变分同化系统极小化算法预调节. 应用气象学报, 2017, 28(2): 168-176. doi: 10.11898/1001-7313.20170204Zhang L, Liu Y Z. The preconditioning of minimization algorithm in GRAPES global four-dimensional variational data assimilation system. J Appl Meteor Sci, 2017, 28(2): 168-176. doi: 10.11898/1001-7313.20170204 [30] 霍振华, 李晓莉, 陈静, 等. 基于背景场奇异向量的CMA全球集合预报试验. 应用气象学报, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602 -
作者更正.pdf