留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMA-GFS 4DVar边界层过程线性化的改进

刘永柱 张林 陈炯 王超

刘永柱, 张林, 陈炯, 等. CMA-GFS 4DVar边界层过程线性化的改进. 应用气象学报, 2023, 34(1): 15-26. DOI:  10.11898/1001-7313.20230102..
引用本文: 刘永柱, 张林, 陈炯, 等. CMA-GFS 4DVar边界层过程线性化的改进. 应用气象学报, 2023, 34(1): 15-26. DOI:  10.11898/1001-7313.20230102.
Liu Yongzhu, Zhang Lin, Chen Jiong, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. DOI:  10.11898/1001-7313.20230102.
Citation: Liu Yongzhu, Zhang Lin, Chen Jiong, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. DOI:  10.11898/1001-7313.20230102.

CMA-GFS 4DVar边界层过程线性化的改进

DOI: 10.11898/1001-7313.20230102
资助项目: 

国家自然科学基金重大项目 4209002

国家重大研发计划 2022YFC3005000

* 本文资助项目有更正,请在【资源附件】查看“作者更正”  

详细信息
    通信作者:

    刘永柱,邮箱:liuyzh@cma.gov.cn

An Improvement of the Linearized Planetary Boundary Layer Parameterization Scheme for CMA-GFS 4DVar

  • 摘要: 持续发展和优化切线性模式的线性化物理过程,保持与非线性模式一致是改善四维变分同化(4DVar)分析和预报效果的有效方法之一。目前业务系统的CMA-GFS模式采用基于Charney-Phillips(C-P)跳点的边界层参数化方案,而CMA-GFS 4DVar系统中采用基于Lorenz跳点的边界层线性化方案。为改善CMA-GFS 4DVar系统的边界层分析和预报效果,基于C-P跳点的边界层参数化方案研发了新边界层线性化方案,并通过对方案中地表热量通量和水汽通量扰动、自由大气的理查逊系数扰动、边界层的热量和动量交换系数扰动等进行更加精细地规约化约束,在确保CMA-GFS切线性和伴随模式稳定运行的情况下,减少线性化过程对切线性模式预报精度的影响。切线性近似试验检验表明:相较于原方案,新边界层线性化方案可以减少边界层位温和比湿的相对误差,最大可减少10%。批量4DVar循环同化试验表明:新边界层线性化方案可以有效改善切线性模式对低层位温、风场和比湿扰动的预报精度,减少4DVar内外循环目标泛函的相对差异,并提高700 hPa位势高度的可预报时效。
  • 图  1  CMA-GFS切线性模式全球平均位温扰动相对误差垂直分布

    Fig. 1  Vertical distribution of global mean relative error of potential temperature perturbation in CMA-GFS tangent linear model

    图  2  TL_MRF试验的位温扰动纬向平均绝对误差

    Fig. 2  Zonal mean absolute errors of potential temperature perturbation for TL_MRF test

    图  3  TL_NMRF_CP试验位温扰动相对于TL_MRF试验的改善

    Fig. 3  Improvements in potential temperature perturbation of TL_NMRF_CP test relative to TL_MRF test

    图  4  CMA-GFS切线性模式全球平均比湿扰动相对误差垂直分布

    Fig. 4  Vertical distribution of global mean relative error of specific humidity perturbation in CMA-GFS tangent linear model

    图  5  TL_MRF试验的比湿扰动纬向平均绝对误差

    Fig. 5  Zonal mean absolute errors of specific humidity perturbation for TL_MRF test

    图  6  TL_NMRF_CP试验比湿扰动相对于TL_MRF试验的改善

    Fig. 6  Improvements in specific humidity perturbation of TL_NMRF_CP test relative to TL_MRF test

    图  7  CMA-GFS切线性模式全球平均纬向风扰动相对误差垂直分布

    Fig. 7  Vertical distribution of global mean relative error of zonal wind perturbation in CMA-GFS tangent linear model

    图  8  TL_MRF试验的纬向风扰动纬向平均绝对误差

    Fig. 8  Mean absolute errors of zonal wind perturbation for TL_MRF test

    图  9  TL_NMRF_CP试验纬向风扰动相对于TL_MRF试验的改善

    Fig. 9  Improvements in zonal wind perturbation of TL_NMRF_CP test relative to TL_MRF test

    图  10  CMA-GFS 4DVar目标泛函的收敛

    Fig. 10  Convergence of the cost function under CMA-GFS 4DVar

    图  11  北半球和南半球700 hPa位势高度的相关系数

    Fig. 11  Anomaly correlations of 700 hPa geopotential height for the Northern Hemisphere and the Southern Hemisphere

    表  1  CMA-GFS 4DVar试验设置

    Table  1  Setting of CMA-GFS 4DVar test

    设置 详细配置
    水平分辨率 外循环为1.0°×1.0°,内循环为1.0°×1.0°
    模式积分步长 外循环为450 s,内循环为900 s
    垂直层数 87层
    同化时间窗长度 6 h
    观测剖分间隔 30 m
    线性化物理过程 垂直扩散、地形阻塞流拖曳、对流参数化、大尺度凝结
    极小化算法 有预调节的Lanczos-CG算法
    重力波控制 数字滤波弱约束
    最大极小化迭代次数 50次
    下载: 导出CSV
  • [1] Bauer P, Thorpe A, Brunet G.The quiet revolution of numerical weather prediction.Nature, 2015, 525(7567):47-55. doi:  10.1038/nature14956
    [2] 沈学顺, 王建捷, 李泽椿等. 中国数值天气预报的自主创新发展. 气象学报, 2020, 78(3): 451-476.

    Shen X H, Wang J J, Li Z C, et al. China's independent and innovative development of numerical weather prediction. Acta Meteor Sinica, 2020, 78(3): 451-476.
    [3] Rabier F, Järvinen H, Klinker E, et al. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart J Roy Meteor Soc, 2000, 126(564): 1143-1170. doi:  10.1002/qj.49712656415
    [4] Klinker E, Rabier F, Kelly G, et al. The ECMWF operational implementation of four-dimensional variational assimilation. Ⅲ: Experimental results and diagnostics with operational configuration. Quart J Roy Meteor Soc, 2000, 126(564): 1191-1215. doi:  10.1002/qj.49712656417
    [5] Gauthier P, Tanguay M, Laroche S, et al. Extension of 3DVar to 4DVar: Implementation of 4DVar at the meteorological service of Canada. Mon Wea Rev, 2010, 135(6): 2339-2354.
    [6] Rawlins F, Ballard S P, Bovis K J, et al. The Met Office global four-dimensional variational data assimilation scheme. Quart J Roy Meteor Soc, 2010, 133(623): 347-362.
    [7] Zhang L, Liu Y Z, Liu Y, et al. The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart J Roy Meteor Soc, 2019, 145(722): 1-15.
    [8] Courtier P, Thépaut J N, Hollingsworth A. A strategy for operational implementation of 4DVar, using an incremental approach. Quart J Roy Meteor Soc, 1994, 120(519): 1367-1387. doi:  10.1002/qj.49712051912
    [9] Errico R M. What is an adjoint model?. Bull Amer Meteor Soc, 1997, 78(11): 2577-2592. doi:  10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
    [10] 刘永柱, 张林, 金之雁. GRAPES全球切线性和伴随模式的调优. 应用气象学报, 2017, 28(1): 62-71. doi:  10.11898/1001-7313.20170106

    Liu Y Z, Zhang L, Jin Z Y. The optimization of GRAPES global tangent linear model and adjoint model. J Appl Meteor Sci, 2017, 28(1): 62-71. doi:  10.11898/1001-7313.20170106
    [11] Mahfouf J F. Influence of physical processes on the tangent-linear approximation. Tellus A, 2000, 51(2): 147-166.
    [12] 龚建东, 刘永柱, 张林. 面向四维变分资料同化的NSAS积云深对流参数化方案的简化及线性化研究. 气象学报, 2019, 77(4): 595-616. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904001.htm

    Gong J D, Liu Y Z, Zhang L. A study on simplification and linearization of NSAS deep convection cumulus parameterization scheme for 4D-Var. Acta Meteor Sinica, 2019, 77(4): 595-616. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904001.htm
    [13] 刘永柱, 龚建东, 张林等. 线性化物理过程对CMA-GFS 4DVar同化的影响. 气象学报, 2019, 77(2): 196-209. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902003.htm

    Liu Y Z, Gong J D, Zhang L, et al. Influence of linearized physical processes on the CMA-GFS 4DVar. Acta Meteor Sinica, 2019, 77(2): 196-209. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902003.htm
    [14] Zou X. Tangent linear and adjoint of "on-off" processes and their feasibility for use in 4-dimensional variational data assimilation. Tellus A, 1997, 49(1): 3-31. doi:  10.3402/tellusa.v49i1.12209
    [15] Holdaway D, Errico R. Using jacobian sensitivities to assess a linearization of the relaxed arakawa-schubert convection scheme. Quart J Roy Meteor Soc, 2014, 40(681): 1319-1332.
    [16] 沈学顺, 苏勇, 胡江林, 等. GRAPES_GFS全球中期预报系统的研发和业务化. 应用气象学报, 2017, 28(1): 1-10. doi:  10.11898/1001-7313.20170101

    Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi:  10.11898/1001-7313.20170101
    [17] 王金成, 陆慧娟, 韩威, 等. GRAPES全球三维变分同化业务系统性能. 应用气象学报, 2017, 28(1): 11-24. doi:  10.11898/1001-7313.20170102

    Wang J C, Lu H J, Han W, et al. Improvements and performances of the operational GRAPES_GFS 3Dvar system. J Appl Meteor Sci, 2017, 28(1): 11-24. doi:  10.11898/1001-7313.20170102
    [18] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601

    Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601
    [19] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502

    Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502
    [20] Charney J G, Phillips N A. Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J Atmos Sci, 1953, 10(2): 71-99.
    [21] Han J, Pan H L. Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea Forecasting, 2010, 26: 520-533.
    [22] Lorenz E N. Energy and numerical weather prediction. Tellus, 1960, 12: 364-373.
    [23] Chen J, Ma Z, Li Z, et al. Vertical diffusion and cloud scheme coupling to the Charney-Phillips vertical grid in CMA-GFS global forecast system. Quart J Roy Meteor Soc, 2020, 146(730): 2191-2204.
    [24] 陈炯, 马占山, 苏勇. 适用于CMA-GFS模式C-P边界层方案的设计和实现. 应用气象学报, 2017, 28(1): 52-61. doi:  10.11898/1001-7313.20170105

    Chen J, Ma Z S, Su Y. Boundary layer coupling to Charney-Phillips vertical grid in CMA-GFS Model. J Appl Meteor Sci, 2017, 28(1): 52-61. doi:  10.11898/1001-7313.20170105
    [25] 张萌, 于海鹏, 黄建平, 等. GRAPES_GFS 2.0模式非系统误差评估. 应用气象学报, 2019, 30(3): 332-344. doi:  10.11898/1001-7313.20190307

    Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi:  10.11898/1001-7313.20190307
    [26] Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev, 1996, 124(10): 2322-2339.
    [27] 张林, 朱宗申. GRAPES模式切线性垂直扩散方案的误差分析和改进. 应用气象学报, 2008, 19(2): 194-200. http://qikan.camscma.cn/article/id/20080235

    Zhang L, Zhu Z S. Estimation of linearized vertical diffusion scheme in GRAPES model. J Appl Meteor Sci, 2008, 19(2): 194-200. http://qikan.camscma.cn/article/id/20080235
    [28] Liu Y Z, Zhang L, Lian Z H. Conjugate gradient algorithm in the four-dimensional variational data assimilation system in CMA-GFS. J Meteor Res, 2018, 32(6): 974-984.
    [29] 张林, 刘永柱. GRAPES全球四维变分同化系统极小化算法预调节. 应用气象学报, 2017, 28(2): 168-176. doi:  10.11898/1001-7313.20170204

    Zhang L, Liu Y Z. The preconditioning of minimization algorithm in GRAPES global four-dimensional variational data assimilation system. J Appl Meteor Sci, 2017, 28(2): 168-176. doi:  10.11898/1001-7313.20170204
    [30] 霍振华, 李晓莉, 陈静, 等. 基于背景场奇异向量的CMA全球集合预报试验. 应用气象学报, 2022, 33(6): 655-667. doi:  10.11898/1001-7313.20220602

    Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi:  10.11898/1001-7313.20220602
  • 作者更正.pdf
  • 加载中
图(11) / 表(1)
计量
  • 摘要浏览量:  1240
  • HTML全文浏览量:  290
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-08
  • 修回日期:  2022-11-24
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回