留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一次高炮防雹的相控阵双偏振雷达观测特征

孙跃 任刚 孙鸿娉 董亚宁 刘福新 肖辉

孙跃, 任刚, 孙鸿娉, 等. 一次高炮防雹的相控阵双偏振雷达观测特征. 应用气象学报, 2023, 34(1): 65-77. DOI:  10.11898/1001-7313.20230106..
引用本文: 孙跃, 任刚, 孙鸿娉, 等. 一次高炮防雹的相控阵双偏振雷达观测特征. 应用气象学报, 2023, 34(1): 65-77. DOI:  10.11898/1001-7313.20230106.
Sun Yue, Ren Gang, Sun Hongping, et al. Features of phased-array dual polarization radar observation during an anti-aircraft gun hail suppression operation. J Appl Meteor Sci, 2023, 34(1): 65-77. DOI:  10.11898/1001-7313.20230106.
Citation: Sun Yue, Ren Gang, Sun Hongping, et al. Features of phased-array dual polarization radar observation during an anti-aircraft gun hail suppression operation. J Appl Meteor Sci, 2023, 34(1): 65-77. DOI:  10.11898/1001-7313.20230106.

一次高炮防雹的相控阵双偏振雷达观测特征

DOI: 10.11898/1001-7313.20230106
资助项目: 

国家重点研发计划 2019YFC1510304

国家自然科学基金项目 42105127

详细信息
    通信作者:

    任刚, 邮箱: 81684128@qq.com

Features of Phased-array Dual Polarization Radar Observation During an Anti-aircraft Gun Hail Suppression Operation

  • 摘要: 选取2021年6月28日山西省临汾市隰县一次高炮防雹作业过程, 利用隰县X波段相控阵双偏振雷达数据分析作业前后强对流云变化的现象和机理。高炮防雹作业后冰雹云单体的宏观特征、动力和微物理的垂直结构均出现短时间明显变化。高炮防雹作业后1 min 55 dBZ顶高急剧下降约2 km至0℃层以下, 水平反射率因子ZH的强回波垂直结构在0℃层断裂, 径向速度散度显示单体前部和后部的辐合带减弱、消失, 差分反射率ZDR在近地面增大, ZDR柱消失, 差分相移率KDP在中低层增大, 共极化相关系数ρhv从0℃层到近地面表现为0.94~0.96的柱状区, 单体核心上部的过冷水小范围中心消失, 0℃层以下由雨夹雹、霰、湿雪及各种雨的混合柱状分布转为低层大雨。这些短时间的明显变化现象支持爆炸防雹理论。
  • 图  1  隰县X波段相控阵双偏振雷达位置和周边地形

    (蓝色圆圈为雷达探测覆盖范围, 填色为海拔高度)

    Fig. 1  Location of X-band phased-array dual polarization radar in Xi County and topography (the shaded)

    (blue circle denotes its detection area, the shaded denotes terrain)

    图  2  2021年6月28日隰县X波段相控阵双偏振雷达的组合反射率因子

    (V型黑实线为高炮防雹作业方位范围,黑色点划线为雷达162°方位角, A~E为单体编号,&表示多个单体合并)

    Fig. 2  Composite reflectivity factor change of X-band phased-array dual polarization radar in Xi County on 28 Jun 2021

    (black V shaped solid lines denote the range of shooting azimuth, black dashed line denotes 162° azimuth of the radar, A-E denote cells, & denotes the merging of cells)

    图  3  2021年6月28日19:01临汾C波段业务天气雷达的组合反射率因子和低仰角ZH

    Fig. 3  Composite reflectivity and ZH at low elevations for Linfen C-band operational weather radar at 1901 BT 28 Jun 2021

    图  4  2021年6月28日隰县X波段相控阵双偏振雷达探测的单体A移动范围内不同ZH阈值回波顶高的时间序列

    (统计范围为雷达方位角135°~180°, 黑色虚线为0℃层高度)

    Fig. 4  Time series of reflectivity top height with different ZH thresholds within the moving range of cell A detected by X-band phased-array dual polarization radar in Xi County on 28 Jun 2021

    (statistical area is the range of radar azimuth between 135° and 180°, black dashed line denotes 0℃ height)

    图  5  2021年6月28日隰县X波段相控阵双偏振雷达探测的单体A作业前后1 min RHI的ZH

    (黑色虚线为0℃层高度)

    Fig. 5  ZH in RHI of cell A 1 min before and after the hail suppression detected by X-band phased-array dual polarization radar in Xi County on 28 Jun 2021

    (black dashed line denotes 0℃ height)

    图  6  2021年6月28日隰县X波段相控阵双偏振雷达探测的单体A作业前后1 min的RHI上的VR和RVD

    (黑色虚线为0℃层高度)

    Fig. 6  VR and RVD in RHI of cell A 1 min before and after the hail suppression detected by X-band phased-array dual polarization radar in Xi County on 28 Jun 2021

    (black dashed line denotes 0℃ height)

    图  7  2021年6月28日隰县X波段相控阵双偏振雷达探测的单体A作业前后1 min的RHI上的偏振参量和粒子相态

    (黑色虚线为0℃层高度)

    Fig. 7  Polarimetric variables and hydrometeor classification in RHI of cell A 1 min before and after the hail suppression detected by X-band phased-array dual polarization radar in Xi County on 28 Jun 2021

    (black dashed line denotes 0℃ height)

    表  1  隰县X波段相控阵双偏振雷达基本性能参数

    Table  1  Basic performance parameters of X-band phased array dual polarization radar in Xi County

    参数 性能指标
    雷达体制 有源相控阵
    工作体制 双极化一维电子扫描
    工作频率范围 9.3~9.5 GHz
    峰值发射功率 400 W
    天线增益 36 dB
    最快扫描时间 45 s
    距离分辨率 小于30 m
    定量探测距离 大于60 km
    最大波束数 1
    扫描仰角 0°~60°
    天线最大旁瓣 不大于-23 dB
    最小波束宽度 1.8°
    交叉极化隔离度 不小于30 dB
    下载: 导出CSV
  • [1] 黄美元, 徐华英, 周玲.中国人工防雹四十年.气候与环境研究, 2000, 5(3):318-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200003012.htm

    Huang M Y, Xu H Y, Zhou L. 40 year's hail suppression in China. Climatic Environ Res, 2000, 5(3): 318-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200003012.htm
    [2] 雷恒池, 洪延超, 赵震, 等. 近年来云降水物理和人工影响天气进展研究. 大气科学, 2008, 32(4): 967-974. doi:  10.3878/j.issn.1006-9895.2008.04.21

    Lei H C, Hong Y C, Zhao Z, et al. Advances in cloud and precipitation physics and weather modification in recent years. Chinese J Atmos Sci, 2008, 32(4): 967-974. doi:  10.3878/j.issn.1006-9895.2008.04.21
    [3] 周筠君, 张义军, 郄秀书, 等. 陇东地区冰雹云系发展演变与其地闪的关系. 高原气象, 1999, 18(2): 236-244. doi:  10.3321/j.issn:1000-0534.1999.02.013

    Zhou Y J, Zhang Y J, Qie X S, et al. The relationship between the variation of hail cloud system and its cloud to ground lightning in the east part of Gansu Province. Plateau Meteor, 1999, 18(2): 236-244. doi:  10.3321/j.issn:1000-0534.1999.02.013
    [4] 俞小鼎, 周小刚, 王秀明. 雷暴与强对流临近天气预报技术进展. 气象学报, 2012, 70(3): 311-337. doi:  10.3969/j.issn.1004-4965.2012.03.003

    Yu X D, Zhou X G, Wang X M. The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteor Sinica, 2012, 70(3): 311-337. doi:  10.3969/j.issn.1004-4965.2012.03.003
    [5] 王芬, 李腹广. 多普勒天气雷达冰雹探测算法评估及检验改进. 气象科技, 2009, 37(3): 345-348. doi:  10.3969/j.issn.1671-6345.2009.03.016

    Wang F, Li F G. Assessment and improvement of CINRAD/CD hail detection algorithm. Meteor Sci Technol, 2009, 37(3): 345-348. doi:  10.3969/j.issn.1671-6345.2009.03.016
    [6] 刘黎平, 钱永甫, 王致君. 用双线偏振雷达研究云内粒子相态及尺度的空间分布. 气象学报, 1996, 54(5): 590-599. doi:  10.3321/j.issn:0577-6619.1996.05.008

    Liu L P, Qian Y F, Wang Z J. The study of special distribution of phase and size of hydrometeors in cloud by dual linear polarization radar. Acta Meteor Sinica, 1996, 54(5): 590-599. doi:  10.3321/j.issn:0577-6619.1996.05.008
    [7] 刘黎平. 双线偏振多普勒天气雷达估测混合区降雨和降雹方法的理论研究. 大气科学, 2002, 26(6): 761-772. doi:  10.3878/j.issn.1006-9895.2002.06.05

    Liu L P. A theoretical study of estimations of rain and hail rates in mixed-phase areas with dual linear polarization radar. Chinese J Atmos Sci, 2002, 26(6): 761-772. doi:  10.3878/j.issn.1006-9895.2002.06.05
    [8] 曹俊武, 刘黎平, 陈晓辉, 等. 3836C波段双线偏振多普勒雷达及其在一次降水过程中的应用研究. 应用气象学报, 2006, 17(2): 192-200. doi:  10.3969/j.issn.1001-7313.2006.02.009

    Cao J W, Liu L P, Chen X H, et al. Data quality analysis of 3836 C-band dual-linear polarimetric weather radar and its observation of a rainfall process. J Appl Meteor Sci, 2006, 17(2): 192-200. doi:  10.3969/j.issn.1001-7313.2006.02.009
    [9] 张杰, 田密, 朱克云, 等. 双偏振雷达基本产品和回波分析. 高原山地气象研究, 2010, 30(2): 36-41. doi:  10.3969/j.issn.1674-2184.2010.02.008

    Zhang J, Tian M, Zhu K Y. Analysis on the products and echo of dual-linear polarization Doppler weather radar. Plateau Mountain Meteor Res, 2010, 30(2): 36-41. doi:  10.3969/j.issn.1674-2184.2010.02.008
    [10] 林文, 张深寿, 罗昌荣, 等. 不同强度强对流云系S波段双偏振雷达观测分析. 气象, 2020, 46(1): 63-72. doi:  10.3969/j.issn.1006-009X.2020.01.015

    Lin W, Zhang S S, Luo C R, et al. Observational analysis of different intensity severe convective clouds by S-band dual-polarization radar. Meteor Mon, 2020, 46(1): 63-72. doi:  10.3969/j.issn.1006-009X.2020.01.015
    [11] 刁秀广, 李芳, 万夫敬. 两次强冰雹超级单体风暴双偏振特征对比. 应用气象学报, 2022, 33(4): 414-428. doi:  10.11898/1001-7313.20220403

    Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. doi:  10.11898/1001-7313.20220403
    [12] 李欣, 张璐. 北上台风强降水形成机制及微物理特征. 应用气象学报, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103

    Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103
    [13] 刘黎平, 胡志群, 吴翀. 双线偏振雷达和相控阵天气雷达技术的发展和应用. 气象科技进展, 2016, 6(3): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201603009.htm

    Liu L P, Hu Z Q, Wu C. Development and application of dual linear polarization radar and phased-array radar. Adv Meteor Sci Tech, 2016, 6(3): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201603009.htm
    [14] Zrnic D S, Kimpel J F, Forsyth D E, et al. Agile-beam phased array radar for weather observations. Bull Amer Meteor Soc, 2007, 88(11): 1753-1766. doi:  10.1175/BAMS-88-11-1753
    [15] Bluestein H B, French M M, Popstefanija I, et al. A mobile, phased-array Doppler radar for the study of severe convective storms. Bull Amer Meteor Soc, 2010, 91(5): 579-600. doi:  10.1175/2009BAMS2914.1
    [16] Kim D, Suezawa T, Mega T. Improving precipitation nowcasting using a three-dimensional convolutional neural network model from multi parameter phased array weather radar observations. Atmos Res, 2021, 262: 105774. doi:  10.1016/j.atmosres.2021.105774
    [17] 张志强, 刘黎平. 相控阵技术在天气雷达中的初步应用. 高原气象, 2011, 30(4): 1102-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201104028.htm

    Zhang Z Q, Liu L P. Preliminary application of phased array technology in weather radar. Plateau Meteor, 2011, 30(4): 1102-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201104028.htm
    [18] 吴翀, 刘黎平, 汪旭东, 等. 相控阵雷达扫描方式对回波强度测量的影响. 应用气象学报, 2014, 25(4): 406-414. doi:  10.3969/j.issn.1001-7313.2014.04.003

    Wu C, Liu L P, Wang X D, et al. The measurement influence of reflectivity factor caused by scanning mode from phased array radar. J Appl Meteor Sci, 2014, 25(4): 406-414. doi:  10.3969/j.issn.1001-7313.2014.04.003
    [19] Wu C, Liu L. Comparison of the observation capability of an X-band phased-array radar with an X-band Doppler radar and S-band operational radar. Adv Atmos Sci, 2014, 34(4): 814-824.
    [20] 刘黎平, 吴林林, 吴翀, 等. X波段相控阵天气雷达对流过程观测外场试验及初步结果分析. 大气科学, 2014, 38(6): 1079-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201406006.htm

    Liu L P, Wu L L, Wu C, et al. Field experiment on convective precipitation by X-band phased-array radar and preliminary results. Chinese J Atmos Sci, 2014, 38(6): 1079-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201406006.htm
    [21] 马舒庆, 陈洪滨, 王国荣, 等. 阵列雷达设计与初步实现. 应用气象学报, 2019, 30(1): 1-12. doi:  10.11898/1001-7313.20190101

    Ma S Q, Chen H B, Wang G R, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. doi:  10.11898/1001-7313.20190101
    [22] 程元慧, 傅佩玲, 胡东明, 等. 广州相控阵天气雷达组网方案设计及其观测试验. 气象, 2020, 46(6): 823-836. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202006009.htm

    Cheng Y H, Fu P L, Hu D M, et al. The Guangzhou phased-array radar network scheme set-up and observation test. Meteor Mon, 2020, 46(6): 823-836. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202006009.htm
    [23] 李哲, 吴翀, 刘黎平, 等. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102

    Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102
    [24] 张曦, 黄兴友, 刘新安, 等. 北京大兴国际机场相控阵雷达强对流天气监测. 应用气象学报, 2022, 33(2): 192-204. doi:  10.11898/1001-7313.20220206

    Zhang X, Huang X Y, Liu X A, et al. The hazardous convective storm monitoring of phased-array antenna radar at Daxing International Airport of Beijing. J Appl Meteor Sci, 2022, 33(2): 192-204. doi:  10.11898/1001-7313.20220206
    [25] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606

    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [26] 苏永彦, 刘黎平. S波段双偏振雷达和X波段相控阵天气雷达中气旋识别结果对比. 气象, 2022, 48(2): 229-244. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202202008.htm

    Su Y Y, Liu L P. Comparison of mesocyclone identification results between S-band dual polarization radar and X-band phased array weather radar. Meteor Mon, 2022, 48(2): 229-244. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202202008.htm
    [27] 周毓荃, 陈宝君, 肖辉, 等. 播撒碘化银实施雹云催化的数值试验——个例研究. 大气科学, 2003, 27(1): 8-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200301001.htm

    Zhou Y Q, Chen B J, Xiao H, et al. A case study of hail suppression by AgI seeding using 3D hailstorm model. Chinese J Atmos Sci, 2003, 27(1): 8-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200301001.htm
    [28] 楼小凤, 师宇, 卢广献. 一次降雹过程的AgI系列催化模拟研究. 应用气象学报, 2016, 27(2): 129-139. doi:  10.11898/1001-7313.20160201

    Lou X F, Shi Y, Lu G X. Numerical modeling of hailstorms with AgI seeding. J Appl Meteor Sci, 2016, 27(2): 129-139. doi:  10.11898/1001-7313.20160201
    [29] 楼小凤, 傅瑜, 孙晶. 一次浙江对流云催化数值模拟试验. 应用气象学报, 2019, 30(6): 665-676. doi:  10.11898/1001-7313.20190603

    Lou X F, Fu Y, Sun J. A numeral seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. doi:  10.11898/1001-7313.20190603
    [30] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601

    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [31] 梁谷, 岳治国, 李燕, 等. 一次"炮响雨落"的野外试验探索. 陕西气象, 2009(6): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SXQI200906009.htm

    Liang G, Yue Z G, Li Y, et al. A field experimental exploration of "rain falling after the cannon sounded". Shaanxi Meteor, 2009(6): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SXQI200906009.htm
    [32] 周和生, 刘立兵, 刘雪涛, 等. 爆炸影响对流云降水回波的试验研究. 中国气象学会2006年年会, 2006.

    Zhou H S, Liu L B, Liu X T, et al. Experimental Study on Precipitation Echo of Convective Cloud Affected by Explosion. 2006 Annual Meeting of China Meteorological Society, 2006.
    [33] 许焕斌. 中国的防雹实践和理论提炼. 北京: 气象出版社, 2021.

    Xu H B. Practice and Theory-Hail Suppression in China. Beijing: China Meteorological Press, 2021.
    [34] 许焕斌. 爆炸防雹中可能动力机制的探讨. 气象学报, 2001, 59(1): 66-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200101007.htm

    Xu H B. The possible dynamic mechanism of explosion in hail suppression. Acta Meteor Sinica, 2001, 59(1): 66-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200101007.htm
    [35] 段英, 许焕斌. 爆炸防雹中的云微物理机制的探讨. 气象学报, 2001, 56(3): 334-340. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200103007.htm

    Duan Y, Xu H B. The possible cloud-micro physical mechanism of explosion in hail suppression. Acta Meteor Sinica, 2001, 56(3): 334-340. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200103007.htm
    [36] 许焕斌. 人工影响天气动力学研究. 北京: 气象出版社, 2014.

    Xu H B. The Studies of Dynamics in Weather Modification. Beijing: China Meteorological Press, 2014.
    [37] Hersbach H, Bell B, Berrisford P, et al. ERA5 Hourly Data on Pressure Levels from 1959 to Present. Copernicus Climate Change Service(C3S) Climate Data Store(CDS), 2018. DOI: 10.24381/cds.bd0915c6.
    [38] Ryzhkov A V, Zrnic D S. Radar Polarimetry for Weather Observations. Cham, Switzerland: Springer Nature Switzerland AG, 2019.
    [39] Feng L, Xiao H, Wen G, et al. Rain attenuation correction of reflectivity for X-Band dual-polarization radar. Atmosphere, 2016, 7(12): 164.
    [40] 肖柳斯, 胡东明, 陈生, 等. X波段双偏振相控阵雷达的衰减订正算法研究. 气象, 2021, 47(6): 703-716. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106006.htm

    Xiao L S, Hu D M, Chen S, et al. Study on attention correction algorithm of X-band dual-polarization phased array radar. Meteor Mon, 2021, 47(6): 703-716. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106006.htm
    [41] 许焕斌, 田利庆. 强对流云中"穴道"的物理含义和应用. 应用气象学报, 2008, 19(3): 372-379. http://qikan.camscma.cn/article/id/20080361

    Xu H B, Tian L Q. Physical meaning of "cave channel" in strong convective storm with its application. J Appl Meteor Sci, 2008, 19(3): 372-379. http://qikan.camscma.cn/article/id/20080361
    [42] 王建恒, 陈瑞敏, 胡志群, 等. 一次强雹云结构的双多普勒雷达观测分析. 气象学报, 2020, 78(5): 796-804.

    Wang J H, Chen R M, Hu Z Q, et al. Dual Doppler radar observations and analysis of the structure of a severe hailstorm. Acta Meteor Sinica, 2020, 78(5): 796-804.
    [43] 冯亮, 肖辉, 孙跃. X波段双偏振雷达水凝物粒子相态识别应用研究. 气候与环境研究, 2018, 23(3): 366-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201803011.htm

    Feng L, Xiao H, Sun Y. A study on hydrometeor classification and application based on X-band dual-polarization radar measurement. Climatic Environ Res, 2018, 23(3): 366-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201803011.htm
    [44] Zhang G, Mahale V N, Putnam B J, et al. Current status and future challenges of weather radar polarimetry: Bridging the gap between radar meteorology/hydrology/engineering and numerical weather prediction. Adv Atmos Sci, 2019, 36(6): 571-588.
    [45] 杨通晓, 袁赵洪. 多波段双偏振天气雷达识别降水类型的模拟研究. 高原气象, 2017, 36(1): 241-255. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201701023.htm

    Yang T X, Yuan Z H. Simulation research on hydrometeor classification by multi-wavelength dual linear polarization Doppler radar. Plateau Meteor, 2017, 36(1): 241-255. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201701023.htm
    [46] 冯亮, 肖辉, 罗丽. T矩阵散射模拟双偏振测雨雷达偏振及衰减特性. 计算物理, 2019, 36(2): 189-202. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201902007.htm

    Feng L, Xiao H, Luo L. Simulation of polarization characteristics and attenuation of dual-polarization rain-measurement radar with T-matrix methods. Chinese J Comput Phys, 2019, 36(2): 189-202. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201902007.htm
    [47] Hall M P M, Cherry S M, Goddard J W F, et al. Raindrop sizes and rainfall rate measured by dual-polarization radar. Nature, 1980, 285(5762): 195-198.
    [48] Kumjian M R, Ganson S M, Ryzhkov A V. Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J Atmos Sci, 2012, 69(12): 3471-3490.
    [49] van Lier-Walqui M, Fridlind A M, Ackerman A S, et al. On polarimetric radar signatures of deep convection for model evaluation: Columns of specific differential phase observed during MC3E. Mon Wea Rev, 2016, 144(2): 737-758.
    [50] Gorgucci E, Chandrasekar V, Bringi V N, et al. Estimation of raindrop size distribution parameters from polarimetric radar measurements. J Atmos Sci, 2002, 59(15): 2373-2384.
    [51] 郭欣, 郭学良, 陈宝君, 等. 一次大冰雹形成机制的数值模拟. 应用气象学报, 2019, 30(6): 651-664. doi:  10.11898/1001-7313.20190602

    Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi:  10.11898/1001-7313.20190602
  • 加载中
图(7) / 表(1)
计量
  • 摘要浏览量:  242
  • HTML全文浏览量:  12
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-11-01
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回