留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合翼无人机不同传感器探测大气温湿度对比

常越 陈洪滨 施红蓉 黄晓松 朱伟锋 朱彦良 王普才 刘洁

常越, 陈洪滨, 施红蓉, 等. 复合翼无人机不同传感器探测大气温湿度对比. 应用气象学报, 2023, 34(1): 78-90. DOI:  10.11898/1001-7313.20230107..
引用本文: 常越, 陈洪滨, 施红蓉, 等. 复合翼无人机不同传感器探测大气温湿度对比. 应用气象学报, 2023, 34(1): 78-90. DOI:  10.11898/1001-7313.20230107.
Chang Yue, Chen Hongbin, Shi Hongrong, et al. Comparison of atmospheric temperature and humidity sounding by different sensors onboard a new composite wing UAV. J Appl Meteor Sci, 2023, 34(1): 78-90. DOI:  10.11898/1001-7313.20230107.
Citation: Chang Yue, Chen Hongbin, Shi Hongrong, et al. Comparison of atmospheric temperature and humidity sounding by different sensors onboard a new composite wing UAV. J Appl Meteor Sci, 2023, 34(1): 78-90. DOI:  10.11898/1001-7313.20230107.

复合翼无人机不同传感器探测大气温湿度对比

DOI: 10.11898/1001-7313.20230107
资助项目: 

国家自然科学基金项目 41775005

国家自然科学基金项目 41675034

国家重点研发计划 2017YFC1501700

详细信息
    通信作者:

    陈洪滨, 邮箱: chb@ mail.iap.ac.cn

Comparison of Atmospheric Temperature and Humidity Sounding by Different Sensors Onboard a New Composite Wing UAV

  • 摘要: 无人机为大气探测的重要平台, 为克服固定翼起飞降落条件要求高和旋翼机飞行航时短的问题, 中国科学院大气物理研究所中层大气和全球环境探测实验室自主研制了一款新型复合翼无人机。为检验其在近地面探测大气温湿度的能力, 于2020年7月28日—8月6日及2021年8月1—6日, 在内蒙古自治区正镶白旗无人机综合验证基地开展了两期无人机搭载不同传感器探测温湿度的比对试验。结果显示:机载自动站与GPS探空仪所测温度绝对偏差为2.00℃~2.35℃, 系统偏差可订正;两者所测相对湿度绝对偏差为4.28%;2021年搭载维萨拉温湿探头, 测量对比表明维萨拉温湿探头与GPS探空仪测量结果一致性较好, 机载自动站与两者差异较大。飞行探测试验表明:长航时复合翼无人机在近地面大气层探空方面机动性强, 与常规旋翼无人机相比, 可获取更大垂直与水平范围的气象要素信息。
  • 图  1  2020年8月2, 4, 5日地基GPS探空测得的位温、相对湿度及风速、风向廓线

    Fig. 1  Temperature, relative humidity, wind speed, and wind direction measured by ground-based GPS radiosonde on 2 Aug, 4 Aug, 5 Aug in 2020

    图  2  2020年8月2日10:10—11:14无人机机载自动站飞行探测的温度(a)和相对湿度(b)

    Fig. 2  Temperature(a) and relative humidity(b) measured along the flight trajectory UAV-borne AWS during 1010 BT-1114 BT on 2 Aug 2020

    图  3  2020年8月2日10:10—11:10无人机飞行海拔高度、姿态角、温度、相对湿度的变化

    Fig. 3  Time series of the UAV flight height, attitude angles as well as the measured temperature and relative humidity in the flight during 1010BT-1110BT on 2 Aug 2020

    图  4  2021年8月1日飞行高度、维萨拉温湿探头及GPS探空仪的温度和相对湿度时间序列

    Fig. 4  Time series of flight height, temperature and relative humidity measured by UAV-borne Vaisala temperature and humidity probe and GPS radiosonde on 1 Aug 2021

    图  5  无人机机载不同传感器温度散点图

    (a)2020年8月2,4,5日自动站与GPS探空仪,(b)2021年8月1日维萨拉温湿探头与GPS探空仪,(c)2021年8月3日自动站与GPS探空仪,(d)2021年8月5日维萨拉温湿探头与自动站

    Fig. 5  Scatter plots of the temperature measurements by UAV-borne sensors

    (a)AWS and GPS radiosonde on 2 Aug, 4 Aug, 5 Aug in 2020,(b)Vaisala temperature and humidity probe and GPS radiosonde on 1 Aug 2021, (c)AWS and GPS radiosonde on 3 Aug 2021, (d)AWS and Vaisala temperature and humidity probe on 5 Aug 2021

    图  6  图 5,但为相对湿度

    Fig. 6  The same as in Fig. 6,but for relative humidity

    图  7  2020年8月2日无人机一段爬升与平飞过程中温度、相对湿度变化

    Fig. 7  Temperature and relative humidity once measured by UAV during the ascending and constant-altitude flights on 2 Aug 2020

    图  8  2020年8月2日无人机在13个高度平飞过程中温度(a)和相对湿度(b)均方差

    Fig. 8  Mean square error of air temperature(a) and relative humidity(b) measured by the UAV during the constant level flights on 2 Aug 2020

    表  1  3种温湿传感器性能参数

    Table  1  Specifications of temperature and humidity of 3 sensors

    仪器 气象要素 测量范围 误差范围 灵敏度
    Airmar 200WX 温度 -40~80℃ ±1.1℃(20℃条件下) 0.1℃
    相对湿度 0~100% ±5%(测量范围0~90%,在20℃条件下) 0.1%
    Vaisala HMP155 温度 -80~60℃ ±(0.176-0.0028×温度)℃(测量范围-80~20℃) 0.1℃
    相对湿度 0~100% ±1.7%(温度范围-20~40℃) 0.1%
    GPS探空仪 温度 -25~55℃ ±1℃ 0.1℃
    相对湿度 0~100% ±5% 0.1%
    下载: 导出CSV

    表  2  无人机飞行探测时间及时长

    Table  2  Time and duration of UAV-borne AWS and GPS radiosonde

    试验序号 飞行时间 飞行时长 天气状况
    1 2020-08-02T10:10—11:14 64 min 晴,6级风
    2 2020-08-04T14:07—14:44 37 min 晴,5级风
    3 2020-08-05T08:29—09:25 56 min 雷阵雨前
    4 2021-08-01T14:21—14:56 35 min 阴转多云
    5 2021-08-03T11:26—12:28 62 min 阵雨后
    下载: 导出CSV
  • [1] Holland G L, McGeer T, Yougren H, et al.Autonomous aerosondes for economical atmospheric soundings anywhere on the globe.Bull Amer Meteor Soc, 1992, 73(12):1987-1998. doi:  10.1175/1520-0477(1992)073<1987:AAFEAS>2.0.CO;2
    [2] Ma S Q, Chen H B, Wang G, et, al. A miniature robotic plane meteorological sounding system. Adv Atmos Sci, 2004, 21(6): 890-896. doi:  10.1007/BF02915591
    [3] Reuder J, Brisset P, Jonassen M, et al. The small unmanned meteorological observer SUMO: A new tool for atmospheric boundary layer research. Meteorologische Zeitschrif, 2009, 18(2): 141-147. doi:  10.1127/0941-2948/2009/0363
    [4] Schmid B, Tomunson J M, Hubbe J M, et al. The DOE ARM aerial facility. Bull Amer Meteor Soc, 2014, 95(5): 723-742. doi:  10.1175/BAMS-D-13-00040.1
    [5] 郭琪, 童庆祥. 无人机在气象监测中的应用. 广东气象, 2016, 38(6): 64-66. doi:  10.3969/j.issn.1007-6190.2016.06.015

    Guo Q, Tong Q X. Application of UAV in meteorological monitoring. Guangdong Meteor, 2016, 38(6): 64-66. doi:  10.3969/j.issn.1007-6190.2016.06.015
    [6] 毛文军. 无人机在气象服务中的应用. 浙江气象, 2016, 37(4): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJQX201604008.htm

    Mao W J. Application of UAV in meteorological service. Zhejiang Meteor, 2016, 37(4): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJQX201604008.htm
    [7] Shimura T. Estimation of wind vector profile using a hexarotor unmanned aerial vehicle and its application to meteorological observation up to 1000 m above surface. J Atmos Oceanic Technol, 2018, 35(8): 1621-1631. doi:  10.1175/JTECH-D-17-0186.1
    [8] 陶昕宇, 黄建平, 谢晓金, 等. 气溶胶辐射效应对边界层结构及夹卷特征影响的观测分析. 大气科学, 2020, 44(6): 1213-1223.

    Tao X Y, Huang J P, Xie X J, et al. Observational analysis of the influence of aerosol radiation effect on planetary boundary layer structure and entrainment characteristics. Atmos Sci, 2020, 44(6): 1213-1223.
    [9] 王宏斌, 吴泓, 李永, 等. 旋翼无人机盐城试验观测资料分析及其在一次浓雾天气观测中的应用. 气象, 2020, 46(1): 89-97.

    Wang H B, Wu H, Li Y, et, al. Validation of rotorcraft UAV boundary layer meteorological observation data and its application in a heavy fog event in Yancheng. Meteor Mon, 2020, 46(1): 89-97.
    [10] Cassano J J. Observaations of atmospheric boundary layer temperature profiles with a small unmanned aerial vehicle. Antarctic Sci, 2014, 26(2): 205-213. doi:  10.1017/S0954102013000539
    [11] 沈怀荣. 无人机气象探测技术. 北京: 清华大学出版社, 2010.

    Shen H R. UAV Meteorological Observation Technology. Beijing: Tsinghua University Press, 2010.
    [12] 史静, 姜明, 姚巍, 等. 基于微型多旋翼无人机的气象及环境监测系统设计. 气象水文海洋仪器, 2018, 35(1): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-QXSW201801011.htm

    Shi J, Jiang M, Yao W, et, al. Design of meteorological and environmental monitoring system based on micro multi rotor UAV. Meteor, Hydrol Marine Instrum, 2018, 35(1): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-QXSW201801011.htm
    [13] 郭学良, 付丹红, 郭欣, 等. 我国云降水物理机观测研究进展. 应用气象学报, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601

    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [14] 程鹏, 罗汉, 常祎, 等. 祁连山一次地形云降水微物理特征飞机观测. 应用气象学报, 2021, 32(6): 691-705. doi:  10.11898/1001-7313.20210605

    Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topgraphic cloud precipitation Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi:  10.11898/1001-7313.20210605
    [15] 马学谦, 郭学良, 刘娜, 等. 青藏高原中东部气溶胶特征的飞机观测. 应用气象学报, 2021, 32(6): 706-719. doi:  10.11898/1001-7313.20210606

    Ma X Q, Guo X L, Liu N, et al. Aircraft measurements on properties of aerosols over the central and eastern Qinghai-Tibet Plateau. J Appl Meteor Sci, 2021, 32(6): 706-719. doi:  10.11898/1001-7313.20210606
    [16] 刘春文, 郭学良, 段玮, 等. 云南省积层混合云微物理特征飞机观测. 应用气象学报, 2022, 33(2): 142-154. doi:  10.11898/1001-7313.20220202

    Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi:  10.11898/1001-7313.20220202
    [17] 陈洪滨, 郑国光. 基于商用运输平台的流动大气和环境监测系统. 地球科学进展, 2005, 20(5): 520-524. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200505006.htm

    Chen H B, Zheng G G. Mobile systems for monitoring the atmosphere and its environments based on commercial transport platforms. Adv in Earth Sci, 2005, 20(5): 520-524. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200505006.htm
    [18] Roadman J, Elston J, Argrow B, et al. Mission performance of the tempest unmanned aircraft system in supercell storms. J Aircraft, 2012, 49(6): 1821-1830.
    [19] 王烁, 张佃国, 王文青, 等. 初冬一次层状云较弱云区垂直结构的飞机观测. 应用气象学报, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604

    Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604
    [20] 廖捷, 熊安元. 我国飞机观测气象资料概况及质量分析. 应用气象学报, 2010, 21(2): 206-213. http://qikan.camscma.cn/article/id/20100210

    Liao J, Xiong A Y. Introduction and quality analysis of Chinese aircraft meteorological data. J Appl Meteor Sci, 2010, 21(2): 206-213. http://qikan.camscma.cn/article/id/20100210
    [21] 李军霞, 李培仁, 陶玥, 等, 山西春季层状云系数值模拟及与飞机探测对比. 应用气象学报, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103

    Li J X, Li P R, Tao Y, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103
    [22] 李杨, 马舒庆, 王国荣, 等. 利用无人机探测台风海鸥的气象要素特征. 应用气象学报, 2009, 20(5): 579-585. http://qikan.camscma.cn/article/id/20090509

    Li Y, Ma S Q, Wang G R, et al. Characteristics of meteorological elements during Typhoon Kalmaegi observed by unmanned aerial vehicle. J Appl Meteor Sci, 2009, 20(5): 579-585. http://qikan.camscma.cn/article/id/20090509
    [23] Bates T S, Quinn P K, Johnson J E, et al. Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems(UAS). Atmos Measur Tech, 2013, 6(8): 2115-2120.
    [24] Sitnikov N M, Borisov Y A, Chekulaev I I, et al. Returnable upper-air sonde based on unmanned or remotely-piloted aerial vehicles for atmospheric balloon sounding. Russian Meteor and Hydrol, 2014, 39(9): 634-638.
    [25] 雷小途. 无人飞机在台风探测中的应用进展. 地球科学进展, 2015, 30(2): 276-283. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201502010.htm

    Lei X T. Progress of unmanned aerial vehicles and their application to detection of tropical cyclone. Adv Earth Sci, 2015, 30(2): 276-283. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201502010.htm
    [26] Garratt J R. Review: The Atmospheric boundary layer. Earth-Science Reviews, 1994, 37: 89-134.
    [27] Boer G D, Palo S, Argrow B, et al. The Pilatus unmanned aircraft system for lower atmospheric research. Atmos Measur Tech, 2016, 9(4): 1845-1857.
    [28] 兰肖考(Lenschow D H)主编. 大气边界层探测. 周秀骥, 等译. 北京: 气象出版社, 1990.

    Lenschow D H. Probing the Atmospheric Boundary Layer. Zhou X J, et al, Translation. Beijing: China Meteorological Press, 1990.
    [29] 徐家平, 赵天良, 陈燕, 等. 基于旋翼无人机的大气边界层环境气象垂直观测及订正方法的研究. 气象与环境学报, 2022, 38(3): 101-111. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202203012.htm

    Xu J P, Zhao T L, Chen Y, et al. Research on vertical observation and correction method of environmental and meteorological elements in ABL using rotorcraft UAV. J Meteo & Envir, 2022, 38(3): 101-111. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202203012.htm
    [30] Kimball S K, Montalvo C J, Mulekar M S. Assessing iMET-XQ performance and optimal placement on a small off-the-shelf, rotary-wing UAV, as a function of atmospheric conditions. Atmosphere, 2020, 11(6): 660.
    [31] Lee T R, Buban M, Dumas E, et al. On the use of rotary-wing aircraft to sample near-surface thermodynamic fields: Results from recent field campaigns. Sensors, 2019, 19(1): 10.
    [32] Greene B R, Segales A R, Waugh S, et al. Considerations for temperature sensor placement on rotary-wing unmanned aircraft systems. Atmos Measur Tech, 2018, 11: 5519-5530.
    [33] Nonami K, Kartidjo M, Yoon K J, et al. Autonomous Control Systems and Vehicles: Intelligent Unmanned Systems. Japan: Springer Japan, 2013.
    [34] 李伟, 赵培涛, 郭启云, 等. 国产GPS探空仪国际比对试验结果. 应用气象学报, 2011, 22(4): 453-462. http://qikan.camscma.cn/article/id/20110408

    Li W, Zhao P T, Guo Q Y, et al. The international radiosonde interconparison results for China-made GPS radiosonde. J Appl Meteor Sci, 2015, 22(4): 453-462. http://qikan.camscma.cn/article/id/20110408
    [35] 杨荣康, 戴伟, 刘清惓, 等. 探空温度传感器的太阳辐射误差研究. 传感器与微系统, 2013, 32(1): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201301003.htm

    Yang R K, Dai W, Liu Q Q, et al. Solar radiation error research of sounding temperature sensor. Trans and Microsys Tech, 2013, 32(1): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201301003.htm
    [36] WMO. Guide to Instruments and Methods of Observation Volume Ⅰ-Measurement of Meteorological Variables. ISBN: 978-92-63-100085, 2018.
  • 加载中
图(8) / 表(2)
计量
  • 摘要浏览量:  179
  • HTML全文浏览量:  3
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-11-08
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回