留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重庆市主城都市区热岛效应定量评估

张德军 杨世琦 祝好 叶勤玉 何泽能 饶智杰

张德军, 杨世琦, 祝好, 等. 重庆市主城都市区热岛效应定量评估. 应用气象学报, 2023, 34(1): 91-103. DOI:  10.11898/1001-7313.20230108..
引用本文: 张德军, 杨世琦, 祝好, 等. 重庆市主城都市区热岛效应定量评估. 应用气象学报, 2023, 34(1): 91-103. DOI:  10.11898/1001-7313.20230108.
Zhang Dejun, Yang Shiqi, Zhu Hao, et al. Quantitative evaluation of heat island effect in Chongqing metropolitan circle. J Appl Meteor Sci, 2023, 34(1): 91-103. DOI:  10.11898/1001-7313.20230108.
Citation: Zhang Dejun, Yang Shiqi, Zhu Hao, et al. Quantitative evaluation of heat island effect in Chongqing metropolitan circle. J Appl Meteor Sci, 2023, 34(1): 91-103. DOI:  10.11898/1001-7313.20230108.

重庆市主城都市区热岛效应定量评估

DOI: 10.11898/1001-7313.20230108
资助项目: 

中国气象局风云应用先行计划 FY-APP-2021.0306

重庆市自然科学基金项目 cstc2020jcyj-msxmX1009

重庆市自然科学基金项目 cstc2020jcyj-msxmX1026

中国气象局省级气象科研所科技创新发展项目 SSCX201917

详细信息
    通信作者:

    杨世琦, 邮箱: yangshiqi1980@sina.com

Quantitative Evaluation of Heat Island Effect in Chongqing Metropolitan Circle

  • 摘要: 结合夜间灯光数据、高程数据及地表分类数据, 提出一种针对山地城市郊区背景划分的方法, 并采用城乡二分法定量评估2001—2020年重庆市主城都市区热岛效应时空变化特征。结果显示传统缓冲区法和综合缓冲区法提取的郊区背景存在明显差异。利用传统缓冲区法提取郊区背景估算的热岛存在大量假热岛像元, 导致传统缓冲区法估算的热岛面积明显大于综合缓冲区法。综合缓冲区法估算结果表明:主城都市区热岛主要分布在中心城区、长寿区、涪陵区以及各区县驻地附近, 冷岛分布在东南部高海拔地区及中心城区部分山脉处。2001—2020年主城都市区热岛面积占比随时间呈波动上升趋势, 且具有明显的季节变化特征, 夏季最强、冬季最弱。
  • 图  1  重庆市主城都市区数字高程和地表分类

    Fig. 1  Digital elevation and land-cover of the metropolitan circle of Chongqing

    图  2  传统缓冲区法和综合缓冲区法在5~25 km尺度下提取的主城都市区郊区背景空间分布

    Fig. 2  Rural reference map of the metropolitan circle of Chongqing extracted at the scale from 5 km to 25 km based on traditional buffer algorithm and comprehensive buffer algorithm

    图  3  2001—2020年传统缓冲区法和综合缓冲区法在25 km尺度下提取的重庆市主城都市区郊区背景面积、城区面积和夜间灯光指数大于15的区域面积

    Fig. 3  Rural reference areas of the metropolitan circle of Chongqing extracted at 25 km scale by traditional buffer algorithm and comprehensive buffer algorithm, city area and area of nighttime light great than 15 from 2001 to 2020

    图  4  传统缓冲区法和综合缓冲区法提取郊区背景估算的重庆市主城都市区城市热岛空间分布

    Fig. 4  Spatial distribution of the surface urban heat island in the metropolitan circle of Chongqing estimated by traditional buffer algorithm and comprehensive buffer algorithm

    图  5  2020年夏季郊区尺度从5 km增加到25 km重庆市主城都市区城市热岛空间变化

    Fig. 5  Areas variation of the surface urban heat island in the metropolitan circle of Chongqing with buffer zone scale increasing from 5 km to 25 km in summer of 2020

    图  6  2020年夏季不同郊区缓冲区尺度下重庆市主城都市区城市热岛等级面积

    Fig. 6  Areas of different surface urban heat island level in the metropolitan circle of Chongqing at different buffer zone scales in summer of 2020

    图  7  重庆市主城都市区城市热岛年平均空间分布

    Fig. 7  Annual spatial distribution of surface urban heat island in the metropolitan areas of Chongqing

    图  8  2001—2020年重庆市主城都市区较强热岛和强热岛面积随时间变化

    Fig. 8  Area changes of surface urban heat island in the metropolitan areas of Chongqing from 2001 to 2020

    图  9  2020年重庆市主城都市区城市热岛季节分布

    Fig. 9  Seasonal spatial distribution of surface urban heat island in metropolitan circle of Chongqing in 2020

    图  10  2001—2020年重庆市主城都市区各经济因子与较强热岛以上面积散点图

    Fig. 10  Scatter plots of the economic factors and the areas of surface urban heat island in the metropolitan circle of Chongqing from 2001 to 2020

  • [1] Li K N, Chen Y H, Wang M J, et al.Spatial-temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China.Sci Total Environ, 2019, 669:229-247. doi:  10.1016/j.scitotenv.2019.03.100
    [2] Meng Q Y, Zhang L L, Sun Z H, et al. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens Environ, 2018, 204: 826-837. doi:  10.1016/j.rse.2017.09.019
    [3] 石涛, 杨元建, 马菊, 等. 基于MODIS的安徽省代表城市热岛效应时空特征. 应用气象学报, 2013, 24(4): 484-494. doi:  10.3969/j.issn.1001-7313.2013.04.011

    Shi T, Yang Y J, Ma J, et al. Spatial-temporal characteristics of urban heat island in typical cities of Anhui Province based on MODIS. J Appl Meteor Sci, 2013, 24(4): 484-494. doi:  10.3969/j.issn.1001-7313.2013.04.011
    [4] Li Y F, Schubert S, Kropp J P, et al. On the influence of density and morphology on the urban heat island intensity. Nat Commun, 2020, 11: 2647. doi:  10.1038/s41467-020-16461-9
    [5] 林爱兰, 谷德军, 彭冬冬, 等. 近60年我国东部区域性持续高温过程变化特征. 应用气象学报, 2021, 32(3): 302-314. doi:  10.11898/1001-7313.20210304

    Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heat event in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. doi:  10.11898/1001-7313.20210304
    [6] Gaur A, Eichenbaum M K, Simonovic S P. Analysis and modelling of surface urban heat island in 20 Canadian cities under climate and land-cover change. J Environ Manag, 2018, 206: 145-157. doi:  10.1016/j.jenvman.2017.10.002
    [7] 田武文, 黄祖英, 胡春娟. 西安市气候变暖与城市热岛效应问题研究. 应用气象学报, 2006, 17(4): 438-443. doi:  10.3969/j.issn.1001-7313.2006.04.007

    Tian W W, Huang Z Y, Hu C J. Research on climate warming and urban heat island in Xi'an. J Appl Meteor Sci, 2006, 17(4): 438-443. doi:  10.3969/j.issn.1001-7313.2006.04.007
    [8] Li H D, Zhou Y Y, Li X M, et al. A new method to quantify surface urban heat island intensity. Sci Total Environ, 2018, 624: 262-272. doi:  10.1016/j.scitotenv.2017.11.360
    [9] 佟华, 刘辉志, 李延明, 等. 北京夏季城市热岛现状及楔形绿地规划对缓解城市热岛的作用. 应用气象学报, 2005, 16(3): 357-366. doi:  10.3969/j.issn.1001-7313.2005.03.009

    Tong H, Liu H Z, Li Y M, et al. Actuality of summer urban heat island and the impact of urban planning "wedge shaped greenland" to reducing the intensity of urban heat island in Beijing. J Appl Meteor Sci, 2005, 16(3): 357-366. doi:  10.3969/j.issn.1001-7313.2005.03.009
    [10] Yao R, Wang L C, Huang X, et al. The influence of different data and method on estimating the surface urban heat island intensity. Ecol Indic, 2018, 89: 45-55. doi:  10.1016/j.ecolind.2018.01.044
    [11] 陈雨烨, 王培娟, 张源达, 等. 基于3种遥感指数的东北春玉米干旱识别对比. 应用气象学报, 2022, 33(4): 466-476. doi:  10.11898/1001-7313.20220407

    Chen Y Y, Wang P J, Zhang Y D, et al. Comparison of drought recognition of spring maize in Northeast China based on 3 remote sensing indices. J Appl Meteor Sci, 2022, 33(4): 466-476. doi:  10.11898/1001-7313.20220407
    [12] Yang S Q, Zhang D J, Sun L, et al. Assessing drought conditions in cloudy regions using reconstructed land surface temperature. J Meteor Res, 2020, 34: 264-279. doi:  10.1007/s13351-020-9136-4
    [13] 杨磊, 韩丽娟, 宋金玲, 等. 基于遥感数据的夏玉米高温热害监测评估. 应用气象学报, 2020, 31(6): 749-758. doi:  10.11898/1001-7313.20200610

    Yang L, Han L J, Song J L, et al. Monitoring and evaluation of high temperature and heat damage of summer maize based on remote sensing data. J Appl Meteor Sci, 2020, 31(6): 749-758. doi:  10.11898/1001-7313.20200610
    [14] Cui F Q, Hamdi R F, Yuan X L, et al. Quantifying the response of surface urban heat island to urban greening in global north megacities. Sci Total Environ, 2021, 801: 149553. doi:  10.1016/j.scitotenv.2021.149553
    [15] Ranagalage M, Dissanayake D, Murayama Y, et al. Quantifying surface urban heat island formation in the world heritage tropical mountain city of Sri Lanka. ISPRS Int J Geo-Inf, 2018, 7(9): 341. doi:  10.3390/ijgi7090341
    [16] Schwarz N, Lautenbach S, Seppelt R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens Environ, 2011, 115: 3175-3186. doi:  10.1016/j.rse.2011.07.003
    [17] 郑祚芳, 范水勇, 王迎春. 城市热岛效应对北京夏季高温的影响. 应用气象学报, 2006, 17(增刊Ⅰ): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2006S1006.htm

    Zheng Z F, Fan S Y, Wang Y C. Effects of urban heat island on summer high temperature in Beijing. J Appl Meteor Sci, 2006, 17(Suppl Ⅰ): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2006S1006.htm
    [18] 李双双, 杨赛霓, 张东海, 等. 近54年京津冀地区热浪时空变化特征及影响因素, 应用气象学报, 2015, 26(5): 545-554. doi:  10.11898/1001-7313.20150504

    Li S S, Yang S N, Zhang D H, et al. Spatiotemporal variability of heat waves in Beijing-Tianjin-Hebei Region and influencing factors in recent 54 years. J Appl Meteor Sci, 2015, 26(5): 545-554. doi:  10.11898/1001-7313.20150504
    [19] 刘勇洪, 房小怡, 张硕, 等. 京津冀城市群城市热岛定量评估. 生态学报, 2017, 37(17): 5818-5835.

    Liu Y H, Fang X Y, Zhang S, et al. Research on quantitative evaluations of heat islands for the Beijing-Tianjin-Hebei urban agglomeration. Acta Ecologica Sinica, 2017, 37(17): 5818-5835.
    [20] Martin P, Baudouin Y, Cachon P. An alternative method to characterize the surface urban heat island. Int J Biometeorol, 2015, 59(7): 849-861. doi:  10.1007/s00484-014-0902-9
    [21] 唐国利, 任国玉, 周江兴. 西南地区城市热岛强度变化及对地面气温序列影响. 应用气象学报, 2008, 19(6): 722-730. http://qikan.camscma.cn/article/id/20080612

    Tang G L, Ren G Y, Zhou J X. Change of urban heat island intensity and its effect on surface mean air temperature records in Southwest China. J Appl Meteor Sci, 2008, 19(6): 722-730. http://qikan.camscma.cn/article/id/20080612
    [22] Haashemi S, Weng Q H, Darvishi A, et al. Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sens, 2016, 8(4): 352. doi:  10.3390/rs8040352
    [23] 刘勇洪, 栾庆祖, 权维俊, 等. 基于多源卫星资料的京津唐城市群热环境研究. 生态环境学报, 2015, 24(7): 1150-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201507012.htm

    Liu Y H, Luan Q Z, Quan W J, et al. Research on heat environment of Beijing-Tianjin-Tangshan urban group based on multisource satellite data. Ecology and Environment Sciences, 2015, 24(7): 1150-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201507012.htm
    [24] 孟凡超, 任国玉, 郭军, 等. 城市热岛效应对天津市居住建筑供暖和制冷负荷的影响. 地理科学进展, 2020, 39(8): 1296-1307.

    Meng F C, Ren G Y, Guo J, et al. Impact of urban heat island effect on the heating and cooling loads of residential buildings in Tianjin City, China. Progress in Geography, 2020, 39(8): 1296-1307.
    [25] Lai J, Zhan W, Huang F, et al. Identification of typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sens Environ, 2018, 217: 203-220.
    [26] 邓玉娇, 杜尧东, 王捷纯, 等. 粤港澳大湾区城市热岛时空特征及驱动因素. 生态学杂志, 2020, 39(8): 2671-2677.

    Deng Y J, Du Y D, Wang J C, et al. Spatiotemporal characteristics and driving factors of urban heat islands in Guangdong-Hong Kong-Marco Greater Bay Area. Chinese J Ecology, 2020, 39(8): 2671-2677.
    [27] Jin M, Dickinson R E, Zhang D. The footprint of urban areas on global climate as characterized by MODIS. J Climate, 2005, 18: 1551-1565.
    [28] Zhou D C, Bonafoni S, Zhang L X, et al. Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China. Sci Total Environ, 2018, 628/629: 415-429.
    [29] 李永华, 高阳华, 韩逢庆, 等. 重庆地区年气温与降水量变化特征及对NPP的影响. 应用气象学报, 2007, 18(1): 73-79. http://qikan.camscma.cn/article/id/20070113

    Li Y H, Gao Y H, Han F Q, et al. Features of annual temperature and precipitation variety with the effects on NPP in Chongqing. J Appl Meteor Sci, 2007, 18(1): 73-79. http://qikan.camscma.cn/article/id/20070113
    [30] 田甜, 牟凤云, 王俊秀, 等. 重庆市主城区土地利用变化对地表径流的影响. 水土保持研究, 2021, 28(4): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202104019.htm

    Tian T, Mou F Y, Wang J X, et al. Impact of land use change on surface runoff in the main urban area of Chongqing. Research of Soil and Water Conservation, 2021, 28(4): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202104019.htm
    [31] Wan Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens Environ, 2014, 140: 36-45.
    [32] Wan Z M, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans Geosci Remote Sens, 1996, 34(4): 892-905.
    [33] Wan Z, Li Z L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans Geosci Remote Sens, 1997, 35: 980-996.
    [34] Wan Z. New refinements and validation of the MODIS land-surface temperature/emissivity product. Remote Sens Environ, 2008, 112: 59-74.
    [35] Duan S B, Li Z L, Wu H, et al. Radiance-based validation of land surface temperature products derived from collection 6 MODIS thermal infrared data. Int J Appl Earth Obs Geoinformation, 2018, 70: 84-92.
    [36] Abercrombie S P, Friedl M A. Improving the consistency of multitemporal land cover maps using a hidden Markov model. IEEE Trans Geosci Remote Sens, 2016, 54(2): 703-713.
    [37] Moon M, Zhang X, Henebry G M, et al. Long-term continuity in land surface phenology measurements: A comparative assessment of the MODIS land cover dynamics and VⅡRS land surface phenology products. Remote Sens Environ, 2019, 226: 74-92.
    [38] Hufkens K, Friedl M, Sonnentag O, et al. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens Environ, 2012, 117: 307-321. http://www.uvm.edu/femc/attachments/project/1121/Hufkens_etal_2012.pdf
    [39] Zhang X, Liu L, Yan D. Comparisons of global land surface seasonality and phenology derived from AVHRR, MODIS, and VⅡRS data. J Geophys Res Biogeosci, 2017, 122(6): 1506-1525.
    [40] Shi K, Chen Y, Yu B, et al. Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data. Appl Energy, 2016, 184: 50-463.
    [41] Hu Y, Chen J, Cao X, et al. Correcting the saturation effect in DMSP/OLS stable nighttime light products based on radiance-calibrated data. IEEE Trans Geosci Remote Sens, 2022, 60: 1-11.
    [42] 杜海波, 魏伟, 张学渊, 等. 黄河流域能源消费碳排放时空格局演变及影响因素——基于DMSP/OLS与NPP/VⅡRS夜间灯光数据. 地理研究, 2021, 40(7): 2051-2065. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ202107014.htm

    Du H B, Wei W, Zhang X Y, et al. Spatio-temporal evolution and influencing factors of energy-related carbon emissions in the Yellow River Basin: Based on the DMSP/OLS and NPP/VⅡRS nighttime light data. Geographical Research, 2021, 40(7): 2051-2065. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ202107014.htm
    [43] 叶彩华, 刘勇洪, 刘伟东, 等. 城市地表热环境遥感监测指标研究及应用. 气象科技, 2011, 39(1): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201101019.htm

    Ye C H, Liu Y H, Liu W D, et al. Research on urban surface heat environment monitoring indexes and its application. Meteor Sci Technol, 2011, 39(1): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201101019.htm
    [44] 陈颖锋, 王玉宽, 傅斌, 等. 成渝城市群城镇化的热岛效应. 生态学杂志, 2015, 34(12): 3494-3501. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201512031.htm

    Cheng Y F, Wang Y K, Fu B, et al. Heat island effect during the process of urbanization in Chengdu-Chongqing urban agglomeration. Chinese J Ecology, 2015, 34(12): 3494-3501. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201512031.htm
    [45] 廖代强, 朱浩楠, 姜平, 等. 卫星遥感在城市化和城市热岛监测中的应用. 气象科技进展, 2021, 11(2): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202102016.htm

    Liao D Q, Zhu H N, Jiang P, et al. Application of satellite remote sensing in urbanization and urban heat island monitoring. Adv Meteor Sci Tech, 2021, 11(2): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202102016.htm
    [46] 陈艳英, 赵磊, 梅勇, 等. 基于MODIS地表温度的重庆城市热岛研究. 南通大学学报(自然科学版), 2016, 15(3): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NGZK201603010.htm

    Chen Y Y, Zhao L, Mei Y, et al. Study on urban heat island based on MODIS land surface temperature in Chongqing. Journal of Nantong University(Nat Sci Ed), 2016, 15(3): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NGZK201603010.htm
    [47] 何泽能, 李永华, 陈志军, 等. 重庆市2006年夏季城市热岛分析. 热带气象学报, 2008, 24(5): 527-532. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200805014.htm

    He Z N, Li Y H, Chen Z J, et al. Analysis of the urban heat island in 2006 summer in Chongqing city. J Trop Meteor, 2008, 24(5): 527-532. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200805014.htm
    [48] 何泽能, 杨世琦, 唐晓萍, 等. 重庆市城市热岛研究的现状需求和建议. 高原山地气象研究, 2010, 30(4): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201004016.htm

    He Z N, Yang S Q, Tang X P, et al. The actuality, demands and suggestions of urban heat island research in Chongqing. Plateau and Mountain in Meteorology Research, 2010, 30(4): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201004016.htm
    [49] 孙俊杰. 天气系统对城市大气颗粒物与热岛效应影响研究. 长沙: 中南大学, 2014.

    Sun J J. Impact of Synoptic System on the Urban Atmospheric Particles and Urban Heat Island. Changsha: Central South University, 2014.
  • 加载中
图(10)
计量
  • 摘要浏览量:  186
  • HTML全文浏览量:  6
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 修回日期:  2022-10-09
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回