基于70 m3膨胀云室的暖云滴谱试验研究

Warm Cloud Size Distribution Experiment Based on 70 m3 Expansion Cloud Chamber

  • 摘要: 为开展云降水微物理过程机理和机制室内试验研究,设计建造北京气溶胶与云相互作用云室(Beijing aerosol and cloud interaction chamber,BACIC),搭建完整的气溶胶、云滴谱及常规气象要素测量系统,并于2019—2021年开展暖云试验。结果表明:BACIC能够模拟大气绝热膨胀成云过程,结果符合云微物理基本原理,云雾环境维持时间为5~10 min,达到开展相关科学问题研究的基本要求。利用环境气溶胶开展膨胀试验,测量显示气溶胶数浓度为10000 cm-3和2500 cm-3环境下,成云云滴数浓度分别为2500 cm-3和200~400 cm-3,云滴平均直径分别为8 μm和15~25 μm;上升速度为14.3 m·s-1和2.09 m·s-1时,气溶胶成云活化率分别为42%和17%;气溶胶成云活化率的敏感区域位于气溶胶数浓度小于5000 cm-3的区域;可定量化分析上升速度、气溶胶数浓度与云滴谱特征的相关关系。不同吸湿特性材料的暖云膨胀试验显示:污染背景下开展亚微米级别吸湿性催化剂播撒会导致云滴谱变窄,表明人工消减暖云或雾应采用大粒径催化剂。

     

    Abstract: To better understand the influence of aerosols on micro-properties of clouds and to facilitate weather modification experiments including the analysis of various materials' seeding effect on clouds and precipitation, Beijing Weather Modification Center has taken a decisive step forward by constructing an advanced facility known as Beijing aerosol and cloud interaction chamber (BACIC) in suburban Pinggu district. Boasting an impressive volume of 70 m3, BACIC is not only the largest of its kind in operation in China, but also a testament to the scale of the country's commitment to this sphere of atmospheric science. The enormity of the chamber's capacity facilitates the performance of a broad spectrum of investigations, thus enhancing the comprehensiveness and reliability of the results obtained.Inside BACIC, advanced instrumentation allows for the meticulous measurement and control of temperature, relative humidity, and background aerosol concentration. During 2019-2021, the chamber's capabilities extend further, as demonstrated by successful tests of its ability to create liquid and mixed-phase clouds. These attributes, combined with its capacity to control the cloud droplet size distribution as proved by comparative experiments involving changes in expansion rate and aerosol number concentration, solidify BACIC's standing as a prime location for warm cloud experimentation. The chamber has also been utilized to investigate effects of anthropogenic pollution over North China Plain (NCP) on cloud microphysics. Using ambient air and manipulating the expansion rate, a significant correlation is discovered between such pollution and the size distribution of cloud droplets. Interestingly, while an increase in aerosol leads to higher number of cloud droplets, it also causes a decrease in droplet size, typically within the range of 5-8 μm. Furthermore, an increase in aerosol number concentration leads to a decrease in the activation rate of aerosols into cloud droplets. This activation rate is around 10% for aerosol concentrations less than 5000 cm-3, and remains stable even when the aerosol concentration increases to 10000 cm-3.BACIC is also proved useful in conducting warm cloud expansion experiments involving different hygroscopic materials. It shows that the distribution of submicron (less than 1 μm) hygroscopic catalysts in a polluted environment leads to narrowing of the cloud droplet spectrum. It suggests that for the purpose of artificially reducing warm clouds or fog, it is recommended to use larger particle sizes. The results obtained from these diverse series of experiments have significantly contributed to theoretical knowledge and provide practical guidance for the ongoing development of artificial weather modification techniques.

     

/

返回文章
返回