留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GRU深度学习的短时临近降水预报订正方法

曾小团 邹晨曦 范娇 王庆国 黄大剑 梁潇 丁禹钦 谭肇

曾小团, 邹晨曦, 范娇, 等. 基于GRU深度学习的短时临近降水预报订正方法. 应用气象学报, 2024, 35(5): 513-525. DOI:  10.11898/1001-7313.20240501..
引用本文: 曾小团, 邹晨曦, 范娇, 等. 基于GRU深度学习的短时临近降水预报订正方法. 应用气象学报, 2024, 35(5): 513-525. DOI:  10.11898/1001-7313.20240501.
Zeng Xiaotuan, Zou Chenxi, Fan Jiao, et al. Short-term precipitation correction based on GRU deep learning. J Appl Meteor Sci, 2024, 35(5): 513-525. DOI:   10.11898/1001-7313.20240501.
Citation: Zeng Xiaotuan, Zou Chenxi, Fan Jiao, et al. Short-term precipitation correction based on GRU deep learning. J Appl Meteor Sci, 2024, 35(5): 513-525. DOI:   10.11898/1001-7313.20240501.

基于GRU深度学习的短时临近降水预报订正方法

DOI: 10.11898/1001-7313.20240501
资助项目: 

广西自然科学基金项目 2022GXNSFAA035482

桂气科重点项目 2024201

详细信息
    通信作者:

    曾小团, 邮箱: 158083890@qq.com

Short-term Precipitation Correction Based on GRU Deep Learning

  • 摘要: 为提高短时临近降水预报准确率, 提出一种订正广西对流尺度数值预报模式(GRAPES-GX)降水预报产品的深度学习方法。该方法通过神经网络对实况进行时空特征提取, 以门控循环网络(GRU)为基础框架, 针对降水产品进行改进, 并用于GRAPES-GX降水预报产品订正。在此基础上, 设计了大气物理规律适配模块, 通过物理条件匹配机制订正模式预报降水强度与落区的系统性误差, 增强训练样本中预报产品和实况的特征相关性, 并协同优化模型参数, 获得更优的订正效果。广西区域试验结果表明: 订正模型在各预报时效、各降水强度等级的TS(threat score)评分均得到正技巧, 总体TS技巧评分为2.21%。对于不低于0.1 mm·h-1、不低于2 mm·h-1、不低于7 mm·h-1、不低于15 mm·h-1、不低于25 mm·h-1和不低于40 mm·h-1降水强度预报TS技巧评分分别为5.67%、3.59%、2.18%、1.46%、1.01%和0.46%。0~2 h、2~4 h和4~6 h时效预报TS技巧评分分别为4.77%、1.28%和0.91%。
  • 图  1  门控网络订正模型架构

    Fig. 1  ReviseGRU model architecture

    图  2  不同降水强度预报的TS评分

    Fig. 2  TS for different precipitation intensities

    图  3  不同时效预报的平均TS评分

    Fig. 3  Averaged TS for different lead times

    图  4  2023年8月27日07:36起报的不同时效降水强度预报与订正结果对比

    Fig. 4  Comparison of precipitation intensity before and after correction for different lead times initiated at 0736 BT 27 Aug 2023

    图  5  2023年9月11日02:24起报的不同时效降水强度预报与订正对比

    Fig. 5  Comparison of precipitation intensity before and after correction for different lead times initiated at 0224 BT 11 Sep 2023

    图  6  2023年7月17日11:00降水强度预报订正对比

    Fig. 6  Comparison of precipitation intensity before and after correction at 1100 BT 17 Jul 2023

    图  7  2023年7月18日08:00不同时效降水落区预报订正对比

    Fig. 7  Comparison of precipitation coverage area before and after correction for different lead times at 0800 BT 18 Jul 2023

  • [1] 张博, 张芳华, 李晓兰, 等. "23·7" 华北特大暴雨数值预报检验评估. 应用气象学报, 2024, 35(1): 17-32. doi:  10.11898/1001-7313.20240102

    Zhang B, Zhang F H, Li X L, et al. Verification and assessment of "23·7" severe rainstorm numerical prediction in North China. J Appl Meteor Sci, 2024, 35(1): 17-32. doi:  10.11898/1001-7313.20240102
    [2] 邢楠, 仲跻芹, 雷蕾, 等. 基于CMA-BJ的北京地区短时强降水预报试验. 应用气象学报, 2023, 34(6): 641-654. doi:  10.11898/1001-7313.20230601

    Xing N, Zhong J Q, Lei L, et al. A probabilistic forecast experiment of short-duration heavy rainfall in Beijing based on CMA-BJ. J Appl Meteor Sci, 2023, 34(6): 641-654. doi:  10.11898/1001-7313.20230601
    [3] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601

    Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601
    [4] 许晨璐, 王建捷, 黄丽萍. 千米尺度分辨率下GRAPES-Meso4.0模式定量降水预报性能评估. 气象学报, 2017, 75(6): 851-876.

    Xu C L, Wang J J, Huang L P. Evaluation on QPF of GRAPES-Meso4.0 model at convection-permitting resolution. Acta Meteor Sinica, 2017, 75(6): 851-876.
    [5] 谢漪云, 王建捷. GRAPES千米尺度模式在西南复杂地区降水预报偏差与成因初探. 气象学报, 2021, 79(5): 732-749.

    Xie Y Y, Wang J J. Preliminary study on the deviation and cause of precipitation prediction of GRAPES kilometer scale model in southwest complex terrain area. Acta Meteor Sinica, 2021, 79(5): 732-749.
    [6] 王伯民, 刘小宁. 中国云的分布. 北京: 气象出版社, 2009.

    Wang B M, Liu X N. Distribution of China Cloud. Beijing: China Meteorological Press, 2009.
    [7] 莫建飞, 钟仕全, 陈燕丽, 等. 极端降水事件下广西流域洪涝社会经济暴露度分析. 灾害学, 2018, 33(2): 83-88. doi:  10.3969/j.issn.1000-811X.2018.02.016

    Mo J F, Zhong S Q, Chen Y L, et al. Study on social-economic exposure degree model of basin flood hazard of extreme precipitation events in Guangxi. J Catastrophology, 2018, 33(2): 83-88. doi:  10.3969/j.issn.1000-811X.2018.02.016
    [8] 林振敏, 黄荣, 戚云枫, 等. 广西对流尺度数值天气预报模式系统建设与效益评估. 气象研究与应用, 2022, 43(2): 105-110.

    Lin Z M, Huang R, Qi Y F, et al. Construction and benefit evaluation of convective scale numerical weather prediction model system in Guangxi. J Meteor Res Appl, 2022, 43(2): 105-110.
    [9] Boeing G. Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity and the limits of prediction. Systems, 2016, 4(4). DOI:  10.3390/systems4040037.
    [10] 杨绚, 代刊, 朱跃建. 深度学习技术在智能网格天气预报中的应用进展与挑战. 气象学报, 2022, 80(5): 649-667.

    Yang X, Dai K, Zhu Y J. Progress and challenges of deep learning techniques in intelligent grid weather forecasting. Acta Meteor Sinica, 2022, 80(5): 649-667.
    [11] 智协飞, 赵忱. 基于集合成员订正的强降水多模式集成预报. 应用气象学报, 2020, 31(3): 303-314. doi:  10.11898/1001-7313.20200305

    Zhi X F, Zhao C. Heavy precipitation forecasts based on multi-model ensemble members. J Appl Meteor Sci, 2020, 31(3): 303-314. doi:  10.11898/1001-7313.20200305
    [12] 王娟怀, 李清泉, 汪方, 等. 基于DERF2.0的华南前汛期降水订正. 应用气象学报, 2021, 32(1): 115-128. doi:  10.11898/1001-7313.20210110

    Wang J H, Li Q Q, Wang F, et al. Correction of precipitation forecast predicted by DERF2.0 during the pre-flood season in South China. J Appl Meteor Sci, 2021, 32(1): 115-128. doi:  10.11898/1001-7313.20210110
    [13] 谢舜, 孙效功, 张苏平, 等. 基于SVD与机器学习的华南降水预报订正方法. 应用气象学报, 2022, 33(3): 293-304. doi:  10.11898/1001-7313.20220304

    Xie S, Sun X G, Zhang S P, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304. doi:  10.11898/1001-7313.20220304
    [14] 吴启树, 韩美, 刘铭, 等. 基于评分最优化的模式降水预报订正算法对比. 应用气象学报, 2017, 28(3): 306-317. doi:  10.11898/1001-7313.20170305

    Wu Q S, Han M, Liu M, et al. A comparison of optimal-score-based correction algorithms of model precipitation prediction. J Appl Meteor Sci, 2017, 28(3): 306-317. doi:  10.11898/1001-7313.20170305
    [15] 李丹, 林文, 刘群, 等. 机器学习在人工增雨效果统计检验中的应用. 应用气象学报, 2024, 35(1): 118-128. doi:  10.11898/1001-7313.20240110

    Li D, Lin W, Liu Q, et al. Application of machine learning to statistical evaluation of artificial rainfall enhancement. J Appl Meteor Sci, 2024, 35(1): 118-128. doi:  10.11898/1001-7313.20240110
    [16] Zhang Y C, Long M S, Chen K Y, et al. Skilful nowcasting of extreme precipitation with NowcastNet. Nature, 2023, 619(7970): 526-532. doi:  10.1038/s41586-023-06184-4
    [17] Sayeed A, Choi Y, Jung J, et al. A deep convolutional neural network model for improving WRF simulations. IEEE Trans Neural Netw Learn Syst, 2023, 34(2): 750-760. doi:  10.1109/TNNLS.2021.3100902
    [18] Zhang C J, Zeng J, Wang H Y, et al. Correction model for rainfall forecasts using the LSTM with multiple meteorological factors. Meteor Appl, 2020, 27(1). DOI:  10.1002/met.1852.
    [19] Han L, Chen M X, Chen K K, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts. Adv Atmos Sci, 2021, 38(9): 1444-1459. doi:  10.1007/s00376-021-0215-y
    [20] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9: 1735-1780. doi:  10.1162/neco.1997.9.8.1735
    [21] 米前川, 高西宁, 李玥, 等. 深度学习方法在干旱预测中的应用. 应用气象学报, 2022, 33(1): 104-114. doi:  10.11898/1001-7313.20220109

    Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi:  10.11898/1001-7313.20220109
    [22] Chung J, Gülçehre Ç, Cho K H, et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Eprint ArXiv, 2014. DOI:  10.48550/arXiv.1412.3555.
    [23] 卓健, 廖胜石, 苏传程, 等. MLP在雷达定量降水估测中的应用. 热带气象学报, 2023, 39(3): 289-299.

    Zhuo J, Liao S S, Su C C, et al. Application of MLP in radar quantitative precipitation estimation. J Trop Meteor, 2023, 39(3): 289-299.
    [24] 卓健, 陈少斌, 周冬静, 等. 快速动态分级法进行雷达定量估测降水方法研究. 热带气象学报, 2018, 34(6): 856-864.

    Zhuo J, Chen S B, Zhou D J, et al. An approach for radar quantitative precipitation estimate based on fast dynamic categorical method. J Trop Meteor, 2018, 34(6): 856-864.
    [25] 胡莹莹, 庞林, 王启光. 基于深度学习的7~15 d温度格点预报偏差订正. 应用气象学报, 2023, 34(4): 426-437. doi:  10.11898/1001-7313.20230404

    Hu Y Y, Pang L, Wang Q G. Application of deep learning bias correction method to temperature grid forecast of 7-15 days. J Appl Meteor Sci, 2023, 34(4): 426-437. doi:  10.11898/1001-7313.20230404
    [26] 张林, 吴蕾, 李峰, 等. 基于深度学习的天气雷达异常数据识别技术. 应用气象学报, 2023, 34(6): 694-705. doi:  10.11898/1001-7313.20230605

    Zhang L, Wu L, Li F, et al. Indentification of weather radar abnormal data based on deep learning. J Appl Meteor Sci, 2023, 34(6): 694-705. doi:  10.11898/1001-7313.20230605
    [27] Shi W Z, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2016: 1874-1883.
    [28] 张秀芝. Weibull分布参数估计方法及其应用. 气象学报, 1996, 54(1): 108-116.

    Zhang X Z. Parameter estimation method of Weibull distribution and its application. Acta Meteor Sinica, 1996, 54(1): 108-116.
    [29] Laroche S, Zawadzki I. A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data. J Atmos Sci, 1994, 51(18): 2664-2682.
    [30] Wilks D S. Statistical Methods in the Atmospheric Sciences. New York: Academic Press, 2019: 373-374.
  • 加载中
图(7)
计量
  • 摘要浏览量:  907
  • HTML全文浏览量:  134
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-28
  • 修回日期:  2024-07-29
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回