留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FY-3G降水测量雷达海洋定标精度检验与评估

袁梅 尹红刚 商建 江柏森 杨润峰 谷松岩 张鹏

袁梅, 尹红刚, 商建, 等. FY-3G降水测量雷达海洋定标精度检验与评估. 应用气象学报, 2024, 35(5): 526-537. DOI:  10.11898/1001-7313.20240502..
引用本文: 袁梅, 尹红刚, 商建, 等. FY-3G降水测量雷达海洋定标精度检验与评估. 应用气象学报, 2024, 35(5): 526-537. DOI:  10.11898/1001-7313.20240502.
Yuan Mei, Yin Honggang, Shang Jian, et al. Validation and evaluation of ocean calibration accuracy of FY-3G precipitation measurement radar. J Appl Meteor Sci, 2024, 35(5): 526-537. DOI:   10.11898/1001-7313.20240502.
Citation: Yuan Mei, Yin Honggang, Shang Jian, et al. Validation and evaluation of ocean calibration accuracy of FY-3G precipitation measurement radar. J Appl Meteor Sci, 2024, 35(5): 526-537. DOI:   10.11898/1001-7313.20240502.

FY-3G降水测量雷达海洋定标精度检验与评估

DOI: 10.11898/1001-7313.20240502
资助项目: 

中国气象局青年创新团队 CMA20240N10

国防科工局“十四五”民用航天预研项目 D040204

国防科工局“十四五”民用航天预研项目 D030303

中国科学院国际伙伴计划项目 183311KYSB20200015

详细信息
    通信作者:

    商建, 邮箱: shangjian@cma.gov.cn

Validation and Evaluation of Ocean Calibration Accuracy of FY-3G Precipitation Measurement Radar

  • 摘要: 2023年4月发射的风云三号气象卫星G星(FY-3G)是我国首颗专用降水测量卫星, 双频降水测量雷达(precipitation measurement radar, PMR)是该颗卫星上最核心的仪器。基于2023年7月数据, 利用海洋定标理论模型, 模拟海洋表面后向散射截面, 与观测海洋表面后向散射截面进行比对, 实现对PMR定标精度的初步评估。通过与国外星载双频降水测量雷达(global precipitation measurement, dual-frequency precipitation radar, GPM DPR)海洋定标检验结果比对, 评估FY-3G PMR定标的准确性。海洋定标精度检验结果表明: FY-3G PMR Ku波段在入射角小于15°时观测值与模型模拟值的偏差较小, 此时FY-3G PMR的偏差为1.65~2.73 dB, 偏差标准差为0.74~1.82 dB。FY-3G PMR Ka波段在18°入射角时偏差小于0.27 dB, 偏差的标准差为3.49 dB。FY-3G PMR与GPM DPR的定标偏差存在较为固定的偏差, 差异主要源自于数据本身的后向散射统计特性, 各入射角下FY-3G PMR Ku与Ka波段海洋表面后向散射数据稳定性与GPM DPR相当。
  • 图  1  2023年7月海洋表面后向散射截面月平均值

    Fig. 1  Monthly mean of sea surface backscattering cross section in Jul 2023

    图  2  2023年7月FY-3G PMR和GPM DPR 0°入射角下海洋表面后向散射截面统计直方图

    Fig. 2  Statistical histogram of sea surface backscattering cross section at 0° incidence angle of FY-3G PMR and GPM DPR in Jul 2023

    图  3  2023年7月FY-3G PMR和GPM DPR海洋表面不同后向散射截面概率

    Fig. 3  Probability density of different sea surface backscattering intensity of FY-3G PMR and GPM DPR in Jul 2023

    图  4  2023年7月海洋表面后向散射截面月均方差及每轨平均值均方差

    Fig. 4  Mean square errors of monthly and orbit mean of sea surface backscattering cross section in Jul 2023

    图  5  2023年7月FY-3G PMR和GPM DPR不同风速区间的海洋定标结果

    Fig. 5  Ocean calibration results of FY-3G PMR and GPM DPR at different wind speed intervals in Jul 2023

    表  1  FY-3G降水测量雷达主要性能指标

    Table  1  Main performance indexes of FY-3G PMR

    参数 Ku波段 Ka波段
    工作中心频率 13.35 ± 0.01 GHz 35.55 ± 0.01 GHz
    极化 HH HH
    脉冲体制 短脉冲 短脉冲/脉冲压缩
    扫描方式 交轨方向一维扫描 交轨方向一维扫描
    距离方向观测范围 -5~18 km(海拔) -5~18 km(海拔)
    6 dB距离分辨率 ≤ 250 m ≤ 250 m
    单程3 dB波束宽度 0.7°±0.02° 0.7°±0.02°
    观测刈幅 300 km 300 km
    最小可检测降水强度 0.5 mm·h-1 (18 dBZ) 0.2 mm·h-1 (12 dBZ)
    辐射精度 ≤ ±1 dB (3σ) ≤ ±1 dB (3σ)
    下载: 导出CSV

    表  1  FY-3G降水测量雷达主要性能指标

    Table  1  Main performance indexes of FY-3G PMR

    参数 Ku波段 Ka波段
    工作中心频率 13.35 ± 0.01 GHz 35.55 ± 0.01 GHz
    极化 HH HH
    脉冲体制 短脉冲 短脉冲/脉冲压缩
    扫描方式 交轨方向一维扫描 交轨方向一维扫描
    距离方向观测范围 -5~18 km(海拔) -5~18 km(海拔)
    6 dB距离分辨率 ≤ 250 m ≤ 250 m
    单程3 dB波束宽度 0.7°±0.02° 0.7°±0.02°
    观测刈幅 300 km 300 km
    最小可检测降水强度 0.5 mm·h-1 (18 dBZ) 0.2 mm·h-1 (12 dBZ)
    辐射精度 ≤ ±1 dB (3σ) ≤ ±1 dB (3σ)
    下载: 导出CSV

    表  1  FY-3G降水测量雷达主要性能指标

    Table  1  Main performance indexes of FY-3G PMR

    参数 Ku波段 Ka波段
    工作中心频率 13.35 ± 0.01 GHz 35.55 ± 0.01 GHz
    极化 HH HH
    脉冲体制 短脉冲 短脉冲/脉冲压缩
    扫描方式 交轨方向一维扫描 交轨方向一维扫描
    距离方向观测范围 -5~18 km(海拔) -5~18 km(海拔)
    6 dB距离分辨率 ≤ 250 m ≤ 250 m
    单程3 dB波束宽度 0.7°±0.02° 0.7°±0.02°
    观测刈幅 300 km 300 km
    最小可检测降水强度 0.5 mm·h-1 (18 dBZ) 0.2 mm·h-1 (12 dBZ)
    辐射精度 ≤ ±1 dB (3σ) ≤ ±1 dB (3σ)
    下载: 导出CSV

    表  2  年7月FY-3G PMR和GPM DPR海洋定标评估结果(Ku波段典型入射角)

    Table  2  FY-3G PMR and GPM DPR ocean calibration evaluation results (Ku-band typical incidence angle) in Jul 2023

    仪器 入射角/(°) 观测值/dB 模拟值/dB 平均偏差/dB 偏差标准差/dB
    FY-3G PMR -18 0.37 -2.37 2.74 3.20
    -15 3.72 2.07 1.65 1.82
    -10 9.33 7.63 1.70 1.68
    -5 12.04 10.36 1.68 0.74
    0 13.71 11.48 2.23 1.26
    5 12.77 10.36 2.41 0.74
    10 10.32 7.58 2.73 1.74
    15 4.62 2.06 2.55 1.82
    18 2.98 -2.38 5.36 3.17
    GPM DPR -18 -0.69 -3.39 2.70 3.41
    -15 2.65 1.39 1.26 2.08
    -10 7.98 7.39 0.59 2.27
    -5 11.45 10.39 1.06 1.24
    0 12.93 11.63 1.30 1.95
    5 11.53 10.45 1.09 1.21
    10 8.12 7.49 0.63 2.23
    15 2.67 1.54 1.13 2.10
    18 -0.58 -3.22 2.64 3.39
    下载: 导出CSV

    表  2  2023年7月FY-3G PMR和GPM DPR海洋定标评估结果(Ku波段典型入射角)

    Table  2  FY-3G PMR and GPM DPR ocean calibration evaluation results (Ku-band typical incidence angle) in Jul 2023

    仪器 入射角/(°) 观测值/dB 模拟值/dB 平均偏差/dB 偏差标准差/dB
    FY-3G PMR -18 0.37 -2.37 2.74 3.20
    -15 3.72 2.07 1.65 1.82
    -10 9.33 7.63 1.70 1.68
    -5 12.04 10.36 1.68 0.74
    0 13.71 11.48 2.23 1.26
    5 12.77 10.36 2.41 0.74
    10 10.32 7.58 2.73 1.74
    15 4.62 2.06 2.55 1.82
    18 2.98 -2.38 5.36 3.17
    GPM DPR -18 -0.69 -3.39 2.70 3.41
    -15 2.65 1.39 1.26 2.08
    -10 7.98 7.39 0.59 2.27
    -5 11.45 10.39 1.06 1.24
    0 12.93 11.63 1.30 1.95
    5 11.53 10.45 1.09 1.21
    10 8.12 7.49 0.63 2.23
    15 2.67 1.54 1.13 2.10
    18 -0.58 -3.22 2.64 3.39
    下载: 导出CSV

    表  2  年7月FY-3G PMR和GPM DPR海洋定标评估结果(Ku波段典型入射角)

    Table  2  FY-3G PMR and GPM DPR ocean calibration evaluation results (Ku-band typical incidence angle) in Jul 2023

    仪器 入射角/(°) 观测值/dB 模拟值/dB 平均偏差/dB 偏差标准差/dB
    FY-3G PMR -18 0.37 -2.37 2.74 3.20
    -15 3.72 2.07 1.65 1.82
    -10 9.33 7.63 1.70 1.68
    -5 12.04 10.36 1.68 0.74
    0 13.71 11.48 2.23 1.26
    5 12.77 10.36 2.41 0.74
    10 10.32 7.58 2.73 1.74
    15 4.62 2.06 2.55 1.82
    18 2.98 -2.38 5.36 3.17
    GPM DPR -18 -0.69 -3.39 2.70 3.41
    -15 2.65 1.39 1.26 2.08
    -10 7.98 7.39 0.59 2.27
    -5 11.45 10.39 1.06 1.24
    0 12.93 11.63 1.30 1.95
    5 11.53 10.45 1.09 1.21
    10 8.12 7.49 0.63 2.23
    15 2.67 1.54 1.13 2.10
    18 -0.58 -3.22 2.64 3.39
    下载: 导出CSV

    表  3  年7月FY-3G PMR和GPM DPR海洋定标评估结果(Ka波段典型入射角)

    Table  3  FY-3G PMR and GPM DPR ocean calibration evaluation results (Ka-band typical incidence angle) in Jul 2023

    仪器 入射角/(°) 观测值/dB 模拟值/dB 平均偏差/dB 偏差标准差/dB
    FY-3G PMR -18 -3.59 -2.30 -1.29 3.51
    -15 -0.45 2.06 -2.51 2.00
    -10 4.83 7.63 -2.80 2.02
    -5 8.28 10.38 -2.10 1.02
    0 9.52 11.49 -1.97 1.57
    5 8.86 10.38 -1.52 1.02
    10 5.33 7.62 -2.29 2.01
    15 1.13 2.13 -1.00 2.01
    18 -1.98 -2.25 0.27 3.49
    GPM DPR -18 -1.72 -2.85 1.13 3.40
    -15 1.56 1.73 -0.17 1.99
    -10 6.94 7.46 -0.52 2.04
    -5 10.09 10.32 -0.23 1.04
    0 11.21 11.47 -0.26 1.46
    5 10.15 10.35 -0.20 1.03
    10 6.90 7.51 -0.61 2.02
    15 1.72 1.81 -0.09 1.98
    18 -1.44 -2.77 1.33 3.36
    下载: 导出CSV

    表  3  2023年7月FY-3G PMR和GPM DPR海洋定标评估结果(Ka波段典型入射角)

    Table  3  FY-3G PMR and GPM DPR ocean calibration evaluation results (Ka-band typical incidence angle) in Jul 2023

    仪器 入射角/(°) 观测值/dB 模拟值/dB 平均偏差/dB 偏差标准差/dB
    FY-3G PMR -18 -3.59 -2.30 -1.29 3.51
    -15 -0.45 2.06 -2.51 2.00
    -10 4.83 7.63 -2.80 2.02
    -5 8.28 10.38 -2.10 1.02
    0 9.52 11.49 -1.97 1.57
    5 8.86 10.38 -1.52 1.02
    10 5.33 7.62 -2.29 2.01
    15 1.13 2.13 -1.00 2.01
    18 -1.98 -2.25 0.27 3.49
    GPM DPR -18 -1.72 -2.85 1.13 3.40
    -15 1.56 1.73 -0.17 1.99
    -10 6.94 7.46 -0.52 2.04
    -5 10.09 10.32 -0.23 1.04
    0 11.21 11.47 -0.26 1.46
    5 10.15 10.35 -0.20 1.03
    10 6.90 7.51 -0.61 2.02
    15 1.72 1.81 -0.09 1.98
    18 -1.44 -2.77 1.33 3.36
    下载: 导出CSV

    表  3  年7月FY-3G PMR和GPM DPR海洋定标评估结果(Ka波段典型入射角)

    Table  3  FY-3G PMR and GPM DPR ocean calibration evaluation results (Ka-band typical incidence angle) in Jul 2023

    仪器 入射角/(°) 观测值/dB 模拟值/dB 平均偏差/dB 偏差标准差/dB
    FY-3G PMR -18 -3.59 -2.30 -1.29 3.51
    -15 -0.45 2.06 -2.51 2.00
    -10 4.83 7.63 -2.80 2.02
    -5 8.28 10.38 -2.10 1.02
    0 9.52 11.49 -1.97 1.57
    5 8.86 10.38 -1.52 1.02
    10 5.33 7.62 -2.29 2.01
    15 1.13 2.13 -1.00 2.01
    18 -1.98 -2.25 0.27 3.49
    GPM DPR -18 -1.72 -2.85 1.13 3.40
    -15 1.56 1.73 -0.17 1.99
    -10 6.94 7.46 -0.52 2.04
    -5 10.09 10.32 -0.23 1.04
    0 11.21 11.47 -0.26 1.46
    5 10.15 10.35 -0.20 1.03
    10 6.90 7.51 -0.61 2.02
    15 1.72 1.81 -0.09 1.98
    18 -1.44 -2.77 1.33 3.36
    下载: 导出CSV
  • [1] McKee J L, Binns A D. A review of gauge-radar merging methods for quantitative precipitation estimation in hydrology. Canadian Water Resources Journal/Revue Canadienne Des Ressources Hydriques, 2016, 41(1/2): 186-203.
    [2] Trenberth K E, Smith L, Qian T T, et al. Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol, 2007, 8(4): 758-769. doi:  10.1175/JHM600.1
    [3] 李青琨. GPM/DPR联合地面CINRAD估测三维降水结构的算法研究. 合肥: 中国科学技术大学, 2021.

    Li Q K. Research on the Algorithm of Three-Dimensional Precipitation Structure Inversion with GPM/DPR and CINRAD Data. Hefei: University of Science and Technology of China, 2021.
    [4] 蒋银丰, 寇蕾蕾, 陈爱军, 等. 双偏振雷达和双频测雨雷达反射率因子对比. 应用气象学报, 2020, 31(5): 608-619. doi:  10.11898/1001-7313.20200508

    Jiang Y F, Kou L L, Chen A J, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. doi:  10.11898/1001-7313.20200508
    [5] 东高红, 刘黎平. 雷达与雨量计联合估测降水的相关性分析. 应用气象学报, 2012, 23(1): 30-39. doi:  10.3969/j.issn.1001-7313.2012.01.004

    Dong G H, Liu L P. Correlation analysis on estimating rainfall using radar-rain gauge calibration. J Appl Meteor Sci, 2012, 23(1): 30-39. doi:  10.3969/j.issn.1001-7313.2012.01.004
    [6] 周冰雪, 朱朗峰, 吴昊, 等. 微波辐射计反演大气廓线精度及降水预报应用. 应用气象学报, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607

    Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607
    [7] 王洪, 周后福, 王琛, 等. 基于微波辐射计和探空的FY-4A温度廓线检验. 应用气象学报, 2023, 34(3): 295-308. doi:  10.11898/1001-7313.20230304

    Wang H, Zhou H F, Wang C, et al. Accuracy validation of FY-4A temperature profile based on microwave radiometer and radiosonde. J Appl Meteor Sci, 2023, 34(3): 295-308. doi:  10.11898/1001-7313.20230304
    [8] 李锐. TRMM测雨雷达对热带降水结构特征及被动微波反演降水的研究. 合肥: 中国科学技术大学, 2005.

    Li R. Study on Structure Characteristics of Tropical Precipitation and Passive Microwave Retrieval of Precipitation with TRMM Rain Measuring Radar. Hefei: University of Science and Technology of China, 2005.
    [9] 王成刚. TRMM PR降水探测及天气雷达降水量估测的方法研究. 南京: 南京大学, 2003.

    Wang C G. Research on Precipitation Detection by TRMM PR and Precipitation Estimation by Weather Radar. Nanjing: Nanjing University, 2003.
    [10] 毛冬艳, 程明虎. 用TRMM资料研究1999年Sam台风. 气象科技, 2001, 29(2): 37-40. doi:  10.3969/j.issn.1671-6345.2001.02.005

    Mao D Y, Cheng M H. Study on Typhoon Sam in 1999 with TRMM data. Meteor Sci Technol, 2001, 29(2): 37-40. doi:  10.3969/j.issn.1671-6345.2001.02.005
    [11] 文镓齐, 王改利, 周任然, 等. 藏东南墨脱地区季风期降水的垂直结构特征. 应用气象学报, 2023, 34(5): 562-573. doi:  10.11898/1001-7313.20230505

    Wen J Q, Wang G L, Zhou R R, et al. Vertical structure characteristics of precipitation in Mêdog area of southeastern Tibet during the monsoon period. J Appl Meteor Sci, 2023, 34(5): 562-573. doi:  10.11898/1001-7313.20230505
    [12] 傅云飞, 宇如聪, 徐幼平, 等. TRMM测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究. 气象学报, 2003, 61(4): 421-431. doi:  10.3321/j.issn:0577-6619.2003.04.004

    Fu Y F, Yu R C, Xu Y P, et al. Analysis on precipitation structures of two heavy rain cases by using TRMM PR and IMI. Acta Meteor Sinica, 2003, 61(4): 421-431. doi:  10.3321/j.issn:0577-6619.2003.04.004
    [13] 李万彪, 陈勇, 朱元竞, 等. 利用热带降雨测量卫星的微波成像仪观测资料反演陆地降水. 气象学报, 2001, 59(5): 591-601. doi:  10.3321/j.issn:0577-6619.2001.05.009

    Li W B, Chen Y, Zhu Y J, et al. Retrieval of rain over land by using TRMM/TMI measurements. Acta Meteor Sinica, 2001, 59(5): 591-601. doi:  10.3321/j.issn:0577-6619.2001.05.009
    [14] 商建, 郭杨, 吴琼, 等. 我国Ka频段降水测量雷达机载校飞试验结果. 应用气象学报, 2011, 22(5): 590-596. doi:  10.3969/j.issn.1001-7313.2011.05.009

    Shang J, Guo Y, Wu Q, et al. Airborne field campaign results of Ka-band precipitation measuring radar in China. J Appl Meteor Sci, 2011, 22(5): 590-596. doi:  10.3969/j.issn.1001-7313.2011.05.009
    [15] 吴庆梅, 程明虎, 苗春生. 用TRMM资料研究江淮、华南降水的微波特性. 应用气象学报, 2003, 14(2): 206-214. doi:  10.3969/j.issn.1001-7313.2003.02.008

    Wu Q M, Cheng M H, Miao C S. Study of microwave characteristics of rainfall over South China and Yangtze River Basin using TRMM data. J Appl Meteor Sci, 2003, 14(2): 206-214. doi:  10.3969/j.issn.1001-7313.2003.02.008
    [16] Chiu L, Serafino G, Teng W L. Applications of Tropical Rainfall Measuring Mission(TRMM) Data//IGARSS 2001. Scanning the Present and Resolving the Future. IEEE 2001 International Geoscience and Remote Sensing Symposium. Sydney, NSW, Australia. IEEE, 2001: 2118-2120.
    [17] Chiu L S, Liu Z, Rui H L, et al. Tropical Rainfall Measuring Mission Data and Access Tools//Earth Science Satellite Remote Sensing. Berlin, Heidelberg: Springer, 2006: 202-219.
    [18] Kojima M, Miura T, Furukawa K, et al. Dual-frequency Precipitation radar(DPR) Development on the Global Precipitation Measurement(GPM) Core Observatory//Earth Observing Missions and Sensors: Development, Implementation, and Characterization Ⅱ. Kyoto, Japan. SPIE, 2012, 8528: 234-243.
    [19] Masaki T, Kubota T, Oki R, et al. Current status of GPM/DPR Level 1 Algorithm Development and DPR Calibration//2015 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Milan, Italy. IEEE, 2015: 2615-2618.
    [20] Zhang P, Gu S, Chen L, et al. FY-3G satellite instruments and precipitation products: First report of China's Fengyun rainfall mission in-orbit. J Remote Sensing, 2023, 3. DOI:  10.34133/remotesensing.0097.
    [21] Shang J, Yang H, Yin H G, et al. Performance analysis of China dual-frequency airborne precipitation radar. IEEE Aerosp Electron Syst Mag, 2013, 28(4): 16-27. doi:  10.1109/MAES.2013.6506825
    [22] Hossan A, Jones W L. Ku- and Ka-band ocean surface radar backscatter model functions at low-incidence angles using full-swath GPM DPR data. Remote Sens, 2021, 13(8). DOI:  10.3390/rs13081569.
    [23] Barrick D. Wind dependence of quasi-specular microwave sea scatter. IEEE Trans Anntenas Propag, 1974, 22(1): 135-136. doi:  10.1109/TAP.1974.1140736
    [24] Brown G S. Quasi-specular Scattering from the Air-sea IKnterface//Geernaert G L, Plant W L. Surface Waves and Fluxes. Dordrecht: Springer, 1990: 1-39.
    [25] Freilich M H, Vanhoff B A. The relationship between winds, surface roughness, and radar backscatter at low incidence angles from TRMM precipitation radar measurements. J Atmos Oceanic Technol, 2003, 20(4): 549-562. doi:  10.1175/1520-0426(2003)20<549:TRBWSR>2.0.CO;2
    [26] Tanelli S, Durden S L, Im E. Simultaneous measurements of Ku- and Ka-band sea surface cross sections by an airborne Radar. IEEE Geosci Remote Sens Lett, 2006, 3(3): 359-363. doi:  10.1109/LGRS.2006.872929
    [27] Valenzuela G R. Theories for the interaction of electromagnetic and oceanic waves-A review. Bound Layer Meteor, 1978, 13(1): 61-85.
    [28] 廖蜜, 张鹏, 刘健, 等. 风云卫星的掩星干大气温度廓线精准度特征. 应用气象学报, 2023, 34(3): 270-281. doi:  10.11898/1001-7313.20230302

    Liao M, Zhang P, Liu J, et al. Accuracy and stability of radio occultation dry temperature profiles from Fengyun satellites. J Appl Meteor Sci, 2023, 34(3): 270-281. doi:  10.11898/1001-7313.20230302
    [29] 邢彩盈, 吴胜安, 朱晶晶. 基于不同资料的影响南海热带气旋环流背景对比. 应用气象学报, 2023, 34(2): 179-192. doi:  10.11898/1001-7313.20230205

    Xing C Y, Wu S A, Zhu J J. Comparison on the circulation background of tropical cyclone affecting the South China Sea based upon different reanalysis datasets. J Appl Meteor Sci, 2023, 34(2): 179-192. doi:  10.11898/1001-7313.20230205
    [30] 杨润峰, 于勇, 李凉海, 等. 全球地表雷达后向散射系数的特性分析及其对星载降水测量雷达系统设计的影响. 电子与信息学报, 2013, 35(11): 2721-2727.

    Yang R F, Yu Y, Li L H, et al. Characteristics of surface NRCS and the effect on the spaceborne precipitation radar system design. J Electron Inf Technol, 2013, 35(11): 2721-2727.
    [31] Holliday D, St-Cyr G, Woods N E. A radar ocean imaging model for small to moderate incidence angles. Int J Remote Sens, 1986, 7(12): 1809-1834. doi:  10.1080/01431168608948971
    [32] Liu Q H, Weng F Z, English S J. An improved fast microwave water emissivity model. IEEE Trans Geosci Remote Sens, 2011, 49(4): 1238-1250. doi:  10.1109/TGRS.2010.2064779
    [33] Stephen J, Hewison T J. A Fast Generic Millimetre-wave Emissivity Model//Proc of SPIE, 1998, 3503. DOI: 10.1117/12.319490.
    [34] Wu J. Mean square slopes of the wind-disturbed water surface, their magnitude, directionality, and composition. Radio Sci, 1990, 25(1): 37-48. doi:  10.1029/RS025i001p00037
    [35] Nouguier F, Mouche A, Rascle N, et al. Analysis of dual-frequency ocean backscatter measurements at Ku- and Ka-bands using near-nadir incidence GPM radar data. IEEE Geosci Remote Sens Lett, 2016, 13(9): 1310-1314. doi:  10.1109/LGRS.2016.2583198
    [36] Walsh E, Vandemark D, Friehe C, et al. Measuring sea surface mean square slope with a 36-GHz scanning. J Geophys Res Atmos, 1998, 1031(C6): 12613-12628.
  • 加载中
图(5) / 表(9)
计量
  • 摘要浏览量:  433
  • HTML全文浏览量:  68
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-17
  • 修回日期:  2024-05-06
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回