留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波辐射计联合云雷达的相对湿度校正方法

张婷 焦志敏 茆佳佳 张雪芬 王彦霏 陈沛宇 金龙

张婷, 焦志敏, 茆佳佳, 等. 微波辐射计联合云雷达的相对湿度校正方法. 应用气象学报, 2024, 35(5): 551-563. DOI:  10.11898/1001-7313.20240504..
引用本文: 张婷, 焦志敏, 茆佳佳, 等. 微波辐射计联合云雷达的相对湿度校正方法. 应用气象学报, 2024, 35(5): 551-563. DOI:  10.11898/1001-7313.20240504.
Zhang Ting, Jiao Zhimin, Mao Jiajia, et al. Relative humidity correction method of microwave radiometer combined with cloud radar. J Appl Meteor Sci, 2024, 35(5): 551-563. DOI:  10.11898/1001-7313.20240504.
Citation: Zhang Ting, Jiao Zhimin, Mao Jiajia, et al. Relative humidity correction method of microwave radiometer combined with cloud radar. J Appl Meteor Sci, 2024, 35(5): 551-563. DOI:  10.11898/1001-7313.20240504.

微波辐射计联合云雷达的相对湿度校正方法

DOI: 10.11898/1001-7313.20240504
资助项目: 

国家重点研发计划 2022YFC3004101

中国气象局气象探测中心青年科技课题 MOCQN202211

河北省气象局科研开发项目 24ky08

详细信息
    通信作者:

    焦志敏, 邮箱: jiaozhim@163.com

Relative Humidity Correction Method of Microwave Radiometer Combined with Cloud Radar

  • 摘要: 基于中国气象局大气探测试验基地地基遥感垂直廓线系统中云雷达与微波辐射计同址观测的优势, 使用2021年8月—2022年7月毫米波云雷达、探空数据, 分析云雷达反射率因子与相对湿度特征关系, 提出联合云雷达的微波辐射计相对湿度分段校正方法, 实现云区微波辐射计相对湿度实时校正, 并利用2023年1—8月探空和2023年7—8月ERA5(ECMWF reanalysis version 5)逐小时再分析数据进行误差分析。结果表明: 入云区的相对湿度与反射率因子间呈正相关关系, 云区中段相对湿度近似饱和状态, 出云区与入云区相对湿度随高度变化近似对称; 层状云条件下校正后微波辐射计与探空和ERA5相对湿度的均方根误差比校正前分别减小7.99%和8.91%, 偏差中位数绝对值分别减小12.62%和13.05%, 且连续观测时次经校正后误差均减小, 校正效果较好; 对流云条件下校正效果也较好, 但部分个例存在过度校正。因此, 联合云雷达的相对湿度分段校正方法能够实现微波辐射计相对湿度廓线的连续实时校正, 可提高有云条件下微波辐射计的观测质量。
  • 图  1  云区探空相对湿度与云雷达反射率因子关系

    Fig. 1  Relationship between relative humidity of radiosonde and reflectivity factor of cloud radar in cloud

    图  2  2021年8月7日08:00和10月14日20:00探空相对湿度和云雷达反射率因子廓线

    Fig. 2  Relative humidity profiles of radiosonde and reflectivity factor of cloud radar at 0800 BT 7 Aug and 2000 BT 14 Oct in 2021

    图  3  入云区探空相对湿度与云雷达反射率因子的关系

    Fig. 3  Relationship between relative humidity of radiosonde and reflectivity factor of cloud radar in cloud-entering region

    图  4  云区中段探空温度和冰面相对湿度箱线图

    Fig. 4  Box plots of temperature and relative humidity on ice surface of radiosonde in middle part of cloud

    图  5  探空出云区和入云区相对湿度与归一化高度关系

    Fig. 5  Relationship between relative humidity of radiosonde and normalized height in cloud-exiting and cloud-entering regions

    图  6  2023年1—8月层状云条件下校正前后微波辐射计与探空相对湿度偏差箱线图

    Fig. 6  Box plots for relative humidity deviation of microwave radiometer before and after correction to radiosonde under stratiform cloud from Jan to Aug in 2023

    图  7  2023年7月1日—8月10日层状云条件下校正前后微波辐射计与ERA5相对湿度偏差箱线图

    Fig. 7  Box plots for relative humidity deviation of microwave radiometer before and after correction to ERA5 under stratiform cloud from 1 Jul to 10 Aug in 2023

    图  8  2023年7月28日08:00—29日10:00连续云天条件下云反射率因子(a)和校正前后微波辐射计与ERA5相对湿度的均方根误差(b)

    Fig. 8  Reflectivity(a) and relative humidity root mean square error of microwave radiometer before and after correction to ERA5(b) under continuous cloudy sky from 0800 BT 28 Jul to 1000 BT 29 Jul in 2023

    图  9  层状云条件下校正前后微波辐射计与探空(a)和ERA5(b)相对湿度对比

    Fig. 9  Relative humidity comparison of microwave radiometer before and after correction and radiosonde(a) and ERA5(b) under stratiform cloud

    图  10  对流云条件下校正前后微波辐射计相对湿度与探空相对湿度偏差箱线图

    Fig. 10  Box plots for relative humidity deviation of microwave radiometer before and after correction to radiosonde under convective cloud

    图  11  对流云条件下校正前后微波辐射计相对湿度与ERA5相对湿度偏差箱线图

    Fig. 11  Box plots for relative humidity deviation of microwave radiometer before and after correction to ERA5 under convective cloud

    图  12  对流云条件下校正前后微波辐射计与探空(a)和ERA5(b)相对湿度的对比

    Fig. 12  Relative humidity comparison of microwave radiometer before and after correction to radiosonde(a) and ERA5(b) under convective cloud

  • [1] 邹荣士, 何文英, 王普才, 等. 辐射传输模式对地基微波辐射计观测亮温的模拟能力分析. 大气科学, 2021, 45(3): 605-616.

    Zou R S, He W Y, Wang P C, et al. Assessment of radiative transfer models based on observed brightness temperature from ground-based microwave radiometer. Chinese J Atmos Sci, 2021, 45(3): 605-616.
    [2] 赵从龙, 蔡化庆, 宋玉东, 等. 对流层水汽和液态水的地基微波遥感探测. 应用气象学报, 1991, 2(2): 200-207. http://qikan.camscma.cn/article/id/19910226

    Zhao C L, Cai H Q, Song Y D. Measurement of water vapor and cloud liquid water content in the troposphere by ground-based microwave remote sensing. J Appl Meteor Sci, 1991, 2(2): 200-207. http://qikan.camscma.cn/article/id/19910226
    [3] 段英, 吴志会. 利用地基遥感方法监测大气中汽态、液态水含量分布特征的分析. 应用气象学报, 1999, 10(1): 34-40. doi:  10.3969/j.issn.1001-7313.1999.01.005

    Duan Y, Wu Z H. Monitoring the distribution characteristics of liquid and vapor water content in the atmosphere using ground-based remote sensing. J Appl Meteor Sci, 1999, 10(1): 34-40. doi:  10.3969/j.issn.1001-7313.1999.01.005
    [4] 王洪, 周后福, 王琛, 等. 基于微波辐射计和探空的FY-4A温度廓线检验. 应用气象学报, 2023, 34(3): 295-308. doi:  10.11898/1001-7313.20230304

    Wang H, Zhou H F, Wang C, et al. Accuracy validation of FY-4A temperature profile based on microwave radiometer and radiosonde. J Appl Meteor Sci, 2023, 34(3): 295-308. doi:  10.11898/1001-7313.20230304
    [5] 茆佳佳, 焦志敏, 张雪芬, 等. 天线罩疏水层老化对微波辐射计观测的影响分析. 气象科技, 2022, 50(6): 759-765.

    Mao J J, Jiao Z M, Zhang X F, et al. Influence analysis of hydrophobic layer aging of radome on microwave radiometer observation. Meteor Sci Technol, 2022, 50(6): 759-765.
    [6] 李金辉, 周毓荃, 岳治国, 等. 基于微波辐射计数据的秦岭南北水汽和云底高度等参量的差异. 气象, 2022, 48(4): 452-458.

    Li J H, Zhou Y Q, Yue Z G, et al. Water vapor and cloud base heigh difference between the north and south of Qinling Mountains based on microwave radiometer measurements. Meteor Mon, 2022, 48(4): 452-458.
    [7] 常越, 陈洪滨, 施红蓉, 等. 复合翼无人机不同传感器探测大气温湿度对比. 应用气象学报, 2023, 34(1): 78-90. doi:  10.11898/1001-7313.20230107

    Chang Y, Chen H B, Shi H R, et al. Comparison of atmospheric temperature and humidity sounding by different sensors onboard a new composite wing UAV. J Appl Meteor Sci, 2023, 34(1): 78-90. doi:  10.11898/1001-7313.20230107
    [8] 周冰雪, 朱朗峰, 吴昊, 等. 微波辐射计反演大气廓线精度及降水预报应用. 应用气象学报, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607

    Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607
    [9] 林晓萌, 尉英华, 张楠, 等. 基于地基遥感设备构建遥感探空廓线. 应用气象学报, 2022, 33(5): 568-580. doi:  10.11898/1001-7313.20220505

    Lin X M, Wei Y H, Zhang N, et al. Construction of air-sounding-profile system based on foundation-remote-sensing equipment. J Appl Meteor Sci, 2022, 33(5): 568-580. doi:  10.11898/1001-7313.20220505
    [10] 王志诚, 张雪芬, 茆佳佳, 等. 不同天气条件下地基微波辐射计探测性能比对. 应用气象学报, 2018, 29(3): 282-295. doi:  10.11898/1001-7313.20180303

    Wang Z C, Zhang X F, Mao J J, et al. Comparison analysis on detection performance of ground-based microwave radiometers under different weather conditions. J Appl Meteor Sci, 2018, 29(3): 282-295. doi:  10.11898/1001-7313.20180303
    [11] 孔凡超, 李江波, 王颖. 北京冬奥会云顶赛场微波辐射计反演大气温湿廓线分析. 气象, 2021, 47(9): 1062-1072.

    Kong F C, Li J B, Wang Y. Analysis on atmospheric profiles retrieved by microwave radiometer at genting venue of Beijing Olympic Winter Games. Meteor Mon, 2021, 47(9): 1062-1072.
    [12] 王振会, 李青, 楚艳丽, 等. 地基微波辐射计工作环境对K波段亮温观测影响. 应用气象学报, 2014, 25(6): 711-721. http://qikan.camscma.cn/article/id/20140607

    Wang Z H, Li Q, Chu Y L, et al. Environmental thermal radiation interference on atmospheric brightness temperature measurement with ground-based K-band microwave radiometer. J Appl Meteor Sci, 2014, 25(6): 711-721. http://qikan.camscma.cn/article/id/20140607
    [13] 车云飞, 马舒庆, 杨玲, 等. 云对地基微波辐射计反演湿度廓线的影响. 应用气象学报, 2015, 26(2): 193-202. doi:  10.11898/1001-7313.20150207

    Che Y F, Ma S Q, Yang L, et al. Cloud influence on atmospheric humidity profile retrieval by ground-based microwave radiometer. J Appl Meteor Sci, 2015, 26(2): 193-202. doi:  10.11898/1001-7313.20150207
    [14] 赵玲, 马玉芬, 张广兴, 等. MP-3000A微波辐射计的探测原理及误差分析. 沙漠与绿洲气象, 2009, 3(5): 54-57. doi:  10.3969/j.issn.1002-0799.2009.05.014

    Zhao L, Ma Y F, Zhang G X, et al. The principle and error analysis of microwave radiometer MP-3000A. Desert Oasis Meteor, 2009, 3(5): 54-57. doi:  10.3969/j.issn.1002-0799.2009.05.014
    [15] 胡树贞, 马舒庆, 陶法, 等. 地基双波段测云系统及其对比试验. 应用气象学报, 2012, 23(4): 441-450. doi:  10.3969/j.issn.1001-7313.2012.04.007

    Hu S Z, Ma S Q, Tao F, et al. Ground-based dual-band cloud observing system and its comparative experiments. J Appl Meteor Sci, 2012, 23(4): 441-450. doi:  10.3969/j.issn.1001-7313.2012.04.007
    [16] Chan P W. Performance and application of a multi-wavelength, ground-based microwave radiometer in intense convective weather. Meteorologische Zeitschrift, 2009, 18(3): 253-265. doi:  10.1127/0941-2948/2009/0375
    [17] Knupp K R, Ware R, Cimini D, et al. Ground-based passive microwave profiling during dynamic weather conditions. J Atmos Ocean Technol, 2009, 26(6): 1057-1073. doi:  10.1175/2008JTECHA1150.1
    [18] 刘红燕. 三年地基微波辐射计观测温度廓线的精度分析. 气象学报, 2011, 69(4): 719-728.

    Liu H Y. The temperature profile comparison between the ground-based microwave radiometer and the other instrument for the recent three years. Acta Meteor Sinica, 2011, 69(4): 719-728.
    [19] 茆佳佳, 张雪芬, 王志诚, 等. 多型号地基微波辐射计亮温准确性比对. 应用气象学报, 2018, 29(6): 724-736. doi:  10.11898/1001-7313.20180608

    Mao J J, Zhang X F, Wang Z C, et al. Comparison of brightness temperature of multi-type ground-based microwave radiometers. J Appl Meteor Sci, 2018, 29(6): 724-736. doi:  10.11898/1001-7313.20180608
    [20] Frate F D, Giovanni S. A combined natural orthogonal function/neural network technique for the radiometric estimation of atmospheric profiles. Radio Science, 1998.33(2): 405-410. doi:  10.1029/97RS02219
    [21] Löhnert U, Crewell S, Simmer C, et al. Profiling cloud liquid water by combining active and passive microwave measurements with cloud model statistics. J Atmos Ocean Technol, 2001, 18(8): 1354-1366. doi:  10.1175/1520-0426(2001)018<1354:PCLWBC>2.0.CO;2
    [22] Liljegren J C, Clothiaux E E, Mace G G, et al. A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J Geophys Res Atmos, 2001, 106(D13): 14485-14500. doi:  10.1029/2000JD900817
    [23] 丁虹鑫, 马舒庆, 杨玲, 等. 云雷达和微波辐射计联合反演大气湿度廓线的初步研究. 气象, 2018, 44(12): 1604-1611. doi:  10.7519/j.issn.10000526.2018.12.010

    Ding H X, Ma S Q, Yang L, et al. Retrieval of humidity profiles by using cloud radar and microwave radiometer. Meteor Mon, 2018, 44(12): 1604-1611. doi:  10.7519/j.issn.10000526.2018.12.010
    [24] 马丽娜. 地基微波辐射计数据的质量控制及基于云天样本的参数反演研究. 南京: 南京信息工程大学, 2018.

    Ma L N. Quality Control of Ground-Based Microwave Radiometer Observations and Parameters Retrieval Study Based on Cloudy Samples. Nanjing: Nanjing University of Information Science & Technology, 2018.
    [25] 张雪芬, 王志诚, 茆佳佳, 等. 微波辐射计温湿廓线反演方法改进试验. 应用气象学报, 2020, 31(4): 385-396. doi:  10.11898/1001-7313.20200401

    Zhang X F, Wang Z C, Mao J J, et al. Experiments on improving temperature and humidity profile retrieval for ground-based microwave radiometer. J Appl Meteor Sci, 2020, 31(4): 385-396. doi:  10.11898/1001-7313.20200401
    [26] 唐英杰, 马舒庆, 杨玲, 等. 云底高度的地基毫米波云雷达观测及其对比. 应用气象学报, 2015, 26(6): 680-687. doi:  10.11898/1001-7313.20150604

    Tang Y J, Ma S Q, Yang L, et al. Observation and comparison of cloud-base heights by ground-based millimeter-wave cloud radar. J Appl Meteor Sci, 2015, 26(6): 680-687. doi:  10.11898/1001-7313.20150604
    [27] 刘晓璐, 刘东升, 郭丽君, 等. 国产MWP967KV型地基微波辐射计探测精度. 应用气象学报, 2019, 30(6): 731-744. doi:  10.11898/1001-7313.20190609

    Liu X L, Liu D S, Guo L J, et al. The observational precision of domestic MWP967KV ground-based microwave radiometer. J Appl Meteor Sci, 2019, 30(6): 731-744. doi:  10.11898/1001-7313.20190609
    [28] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteor Soc, 2020, 145(722): 1882-1896.
    [29] 李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502

    Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502
    [30] 王梧熠, 董晓波, 孙玉稳, 等. 邢台地区微波辐射计与无线电探空仪数据对比分析. 气象科技, 2022, 50(3): 344-354.

    Wang W Y, Dong X B, Sun Y W, et al. Comparative analysis of microwave radiometer and radiosonde measurements in Xingtai Area. Meteor Sci Technol, 2022, 50(3): 344-354.
  • 加载中
图(12)
计量
  • 摘要浏览量:  348
  • HTML全文浏览量:  47
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-21
  • 修回日期:  2024-05-27
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回