广东省前汛期暴雨与 500 hPa 关键区准双周振荡*

纪忠萍¹⁾²⁾ 谷德军³⁾ 吴乃庚¹⁾ 谢炯光¹⁾

¹⁾(广州中心气象台,广州 510080) ²⁾(中国气象科学研究院灾害天气国家重点实验室,北京 100081) ³⁾(中国气象局广州热带海洋气象研究所 热带季风重点实验室,广州 510080)

摘 要

采用小波分析、功率谱和交叉谱分析、Lanczos 滤波等方法探讨了 1961—2008 年广东省前汛期暴雨的变化及 与影响广东省前汛期降水的 500 hPa 关键区准双周振荡的关系。结果表明:20 世纪 90 年代以来,广东省 6 月发生 暴雨的日数明显增多,强度增强;但 90 年代后期以来,前汛期暴雨的总日数却减少;前汛期暴雨总日数具有较明显 的准 6~7 年周期振荡。广东省前汛期暴雨量占总降水量的 37.7%,它与总降水量呈显著正相关。广东省前汛期 降水与 500 hPa 关键区在大多数年份均存在显著的准单周、准双周振荡。虽然它们也存在 30~60 d 振荡,但不显 著。500 hPa 关键区在大多数年份均存在显著的准单周、准双周振荡。虽然它们也存在 30~60 d 振荡,但不显 著。500 hPa 关键区与广东省前汛期降水在准双周振荡尺度上关系最密切,振荡超前或滞后的时间差在2 d 之内。 统计近 48 年 4—6 月 500 hPa 关键区准双周振荡波谷前后 3 d(个别 4 d)广东省暴雨出现的概率为 79%。采用典型 个例的合成分析,得到 500 hPa 关键区准双周振荡波谷附近有、无暴雨出现的大气环流场演变具有明显差异,可为 广东省前汛期暴雨的中期预报提供参考。

关键词:前汛期暴雨; 500 hPa关键区; 准双周振荡;中期预报

引 言

自 20 世纪 70 年代初 Madden 等[1-2] 首先发现热 带大气纬向风和气压场存在 40~50 d 周期的低频振 荡以来,由于其活动及异常对不少地区的天气和气候 有重大影响,大气低频振荡已成为大气科学的主要前 沿研究课题之一。降水及其主要影响系统的低频振 荡情况引起了气象学家的普遍重视[3-9]。国内学者在 大气低频振荡与降水的关系方面也做了大量研究,主 要集中在以下几个方面:①气候平均态下东亚夏季风 及降水的低频振荡特征[10-12];②典型旱涝年华北、江 淮及长江流域季节内振荡特征及传播方向的差 异[13-15];③典型年份江淮与长江流域[16-23]、华南地 区^[24-26]暴雨过程及其影响系统的低频振荡特征与成 因。这些研究工作多集中在探讨我国东部降水或暴 雨与大气低频振荡的关系,尤其是与江淮或长江流域 旱涝的关系较多,而对华南特别是广东省暴雨过程与 大气低频振荡之间关系的研究相对较少,且以典型年 份的个例分析为主,缺乏对近几十年它们之间逐年低 频变化关系的整体研究。

广东省地处低纬度地区,濒临南海,有丰富的水 汽来源,是我国暴雨的高发区。每年4—6月的前汛 期是暴雨集中期和各种强对流天气多发季节,常造 成严重的暴雨洪涝,给国民经济和人民生活带来严 重威胁和巨大损失。因此,研究近几十年广东省前 汛期暴雨的变化特征并统计暴雨过程的发生与大气 低频振荡的关系,探讨广东省暴雨过程在低频振荡 不同阶段大气环流场的演变特征,有助于做好广东 省暴雨过程的中期及延伸期预报,从而为抗洪减灾、 为国民经济的持续发展服务。

由于华南前汛期降水是在一定的中高纬度和低 纬度地区环流背景下生成的,每次降水过程,在 500 hPa上中高纬度和低纬度地区几乎都有低槽活 动,二者结合可产生较强降水^[27]。那么,影响广东 省前汛期降水变化的 500 hPa 关键区及其低频特 征,低频变化与广东省前汛期暴雨的关系需进一步 研究。本文首先对近 48 年广东省前汛期暴雨的变

 ^{*} 中国气象局气象新技术推广预报员专项(CMATG2007Y04)、公益性行业(气象)专项(CTHY20100618)、广东省科技厅项目(2006B37202004)、 广东省气象局项目(2008A02)和中国气象局气候变化专项(CCSF-0903)共同资助。
2009-12-03收到,2010-08-15收到再改稿。

化特征进行了分析,寻找影响广东省前汛期降水变 化的 500 hPa 关键区,分析了近 48 年广东省前汛期 降水及500 hPa 关键区逐年低频振荡的变化特征, 统计了 500 hPa 关键区准双周振荡低频波谷的变化 与广东省前汛期暴雨的关系,并利用典型个例的合 成分析,探讨 500 hPa 关键区准双周振荡波谷附近 广东省有、无暴雨出现大气环流场演变特征,以便在 实际业务预报中参考 500 hPa 关键区低频波谷的变 化并结合数值预报产品,做好广东省前汛期暴雨的 中期预报。

1 资料与方法

1961—2008 年广东省 86 站逐日降水资料及广 东省逐日雨型分布图; NCEP/NCAR 逐日再分析资 料,分辨率为 2.5°×2.5°。

采用墨西哥帽(Mexican hat)子波分析^[28-29]来 研究广东省前汛期暴雨总日数的周期变化,采用相 关分析研究广东省前汛期降水与 500 hPa 位势高度 场的关系,寻找影响广东省前汛期降水变化的 500 hPa关键区。用功率谱及交叉谱^[30]分析方法研 究逐年 4—6月 500 hPa 关键区逐日资料的低频振 荡特征及其关系,并用 Lanczos 滤波器^[31]对逐年 3—7月的逐日 500 hPa 关键区进行准双周振荡(10 ~20 d)滤波,统计逐年 4—6月准双周振荡滤波曲 线波谷变化与广东省前汛期暴雨之间的关系。最后 用合成分析方法分析了 500 hPa 关键区准双周振荡 波谷附近有、无暴雨出现的 500 hPa 环流场、850 hPa 风场及水汽通量矢量与水汽通量散度场的演变特 征。

根据文献[32],水汽通量 F 及水汽通量散度 ▽•F的表达式分别为

$$\mathbf{F} = \frac{1}{g} q \mathbf{V},\tag{1}$$

$$\nabla \cdot \mathbf{F} = \frac{1}{g} \nabla \cdot (q\mathbf{V}) = \frac{1}{g} \left[\frac{\partial}{\partial x} (uq) + \frac{\partial}{\partial y} (vq) \right]_{\circ}$$
(2)

其中,V为水平风,q为比湿,F的方向与V的方向相同,即可用水平风方向表示水汽通量输送方向。

2 广东省前汛期暴雨的变化特征

根据广东省气象台中期预报的服务和实际经

验,在每日降水量图上(08:00一次日 08:00,北京 时,下同),凡广东省内某测站的日降水量达 50 mm 以上者,称该站有暴雨;而当某日广东省测站有相邻 4 站暴雨连成片者,称该日广东省有暴雨。

图 1a 为根据上述定义所得到的 1961-2008 年 4-6月广东省逐月暴雨日数分布。由图 1a 可见, 在大多数年份,4月的暴雨日数少于5月或6月。4 月的暴雨日数最多为 10 d(1980 年),最少为 0 d (1962,1968,1991,1995年);5月最多为12d(1989 年),最少为 0 d(1963 年);6 月最多为 15 d(1998 年),最少为2d(1969年)。计算表明,4-6月各月 出现暴雨的平均日数分别为 3.8 d, 6.4 d, 7.2 d。 因此,每年5-6月是广东省前汛期暴雨的集中阶 段,而6月则为前汛期暴雨日数出现最多的月份。 这也说明5月中旬以后,由于夏季风的到来,降水量 明显增大,降水过程的对流活动强,暴雨常发生于这 段时期[33]。这与池艳珍等[34]分析华南前汛期不同 时段特征所得到的夏季风降水时段盛期主要集中在 6月一致,与谢炯光等[35]统计得到广东省连续暴雨 出现在6月的几率最多也一致。

另外,从图 1a 还可以看到,6 月暴雨日数在 20 世纪 60 年代、1990—2008 的大多数年份比 5 月暴雨 日数多,而在 20 世纪 70,80 年代 6 月暴雨日数大多 比 5 月少,从逐年 6 月暴雨日数与 5 月暴雨日数之 差及其高斯九点平滑曲线(图略)也可看出这种明显 的年代际变化。另外还可以看到,进入 90 年代以 来,6 月发生暴雨的次数明显增多,强度增强。几次 致洪暴雨^[36]如"94.6"、"98.6"、"05.6"及 2008 年广 东最强的龙舟水^[37]均发生在 6 月,这是否由全球变 暖引起,仍需做进一步的深入研究。

图 1b 为广东省 1961—2008 年 4—6 月暴雨量 占总降水量的百分比,它反映前汛期暴雨对总降水 量的贡献率。可见,大多数年份暴雨量占总降水量 的百分比随总降水量的增加(减少)而增加(减少)。 相关分析表明,它们之间的相关系数为 0.579,通过 0.001 显著性水平检验。计算表明,近 48 年暴雨量 占总降水量的百分比平均为 37.7%,表明暴雨是广 东省前汛期降水的主要组成部分。异常旱年(1963, 1967,1991,1995,1999,2002,2004 年)的暴雨所占 百分比为 22.8%~36.6%,在平均值以下;而异常 涝年(1973,1975,1993,2001,2005,2006,2008 年) 的暴雨所占百分比为 32.5%~51.8%,1975 年在平 均值之下,其余年份均高于历年平均值。1963 年为 历年 4—6 月总降水量的最低值,暴雨量占总降水量 的百分比也为历年最低值(仅为22.8%);而 2008 年 为历年 4—6 月总降水量的最高值,暴雨量占总降水 量的百分比也为历年最高值(51.8%)。因此,暴雨 量的多少也在一定程度上反映了干旱或洪涝的程度 轻重。

图 2 为 1961—2008 年 4—6 月广东省暴雨总日 数的变化及其小波分析。由图 2a 可见,4—6 月出 现暴雨的平均日数为 17.3 d,最多为 28 d(1973 年 及 1998 年),最少为 6 d(1963 年)。另外,从图 2a 高斯九点平滑滤波还可以看到,20 世纪 70 年代前 期,70 年代末至 80 年代前期、1992—1994 年广东省 前汛期暴雨总日数处于年代际变化的偏多期,而 60 年代、80 年代后期、90 年代后期—2007 年处于年代 际变化的正常~偏少阶段。这说明 20 世纪 90 年代 后期以来,广东省前汛期暴雨总日数并未随着全球 变暖而增加,而是具有减少的特征。这与彭丽英 等^[38]的研究结果一致。

由图 2b 可见,广东省前汛期暴雨总日数具有明

显的准 4~8 年及 30~40 年左右的周期振荡。其中 4~8 年左右的周期振荡主要存在于 1961—1979 年、1992—1999年;从年代际小波系数值的变化可 知,1961—1970年、1995—2007小波系数为负,反映 暴雨总日数偏少,20世纪 70年代—1990年小波系 数为正,反映暴雨总次数以偏多为主,这与图 2a 高 斯九点平滑滤波曲线反映的年代际变化基本一致。 从图 2c小波功率谱图可以看到,主要周期为 37.8 年和 6.7年,虽然它们没有通过 0.1 显著性水平检 验,但仍是序列中的主要周期。另外,由于资料长度 的原因,37.8年的周期并不可靠。故广东省的前汛 期暴雨总日数具有较明显的准 6~7年左右的周期 振荡。

(the horizontal solid line stands for 17.3 days, the mean days of Guangdong torrential rain during April—June from 1961 to 2008, and dashed line stands for smoothed filtered by 9 points Gaussian

smoothing in Fig. 2a; the shaded areas represent regions with significance level of 0.10

and the cross hatched regions on both ends indicate the areas with boundary effects in Fig. 2b)

3 影响广东省前汛期降水的 500 hPa 关键 区及其准双周振荡与广东暴雨的关系

3.1 影响广东省前汛期降水的 500 hPa 关键区

计算 1961-2008 年逐年 4-6 月广东省 86 站

平均逐日降水与逐日 500 hPa 高度场的相关系数, 然后进行多年平均,可得到图 3。由图 3 可见,通过 0.05 显著性水平检验的显著负相关区主要位于长 江中下游流域一华南,即位于 20°~30°N,102.5°~ 120°E 的区域,通过 0.01 显著性水平检验的高负相 关区主要位于湖南一江西一广西一广东中西部。这 反映了江南一华南上空的高空槽是影响广东省前汛 期降水的主要系统。因此选取 20°~30°N,102.5°~ 120°E 的高负相关区作为广东前汛期降水的 500 hPa关键区研究,取关键区内各格点位势高度值 的累加平均值作为 500 hPa 关键区指数,并定义为 500 hPa 关键区。

3.2 广东省前汛期降水与 500 hPa 关键区的低频 振荡特征及其关系

为了研究近48年4—6月广东省前汛期降水与 500hPa关键区的低频振荡特征,首先将逐年3月 31日—7月1日的逐日资料参照文献[5,15]的处理 方法消除季节变化,即先求序列的逐日气候平均值 以消除日变化,再求序列长度范围内的季节平均值 来消除季节变化,并对每序列做3d滑动平均以消 弱高频波的影响。对上述经过处理的广东省前汛期 降水、500 hPa关键区逐年4-6月逐日资料进行功 率谱分析(样本数 N=91,最大滞后长度 M=30), 结果见表1与表2。

由表1可见,近48年,广东省前汛期降水有42 年存在10~20 d 的振荡,其中有 33 年通过 0.05 的显 著性水平检验;有36年存在5~7d的振荡,其中有 34 年通过 0.05 的显著性水平检验;有 32 年存在 30 ~60 d 的振荡,其中只有 1977 年能通过 0.05 的显著 性水平检验。因此,广东省前汛期降水在大多数年份 存在显著的准单周、准双周振荡。虽然也存在 30~ 60 d 的振荡,但不显著。这与黄菲等^[12]研究气候平 均意义下华南是我国降水准双周振荡的主要显著性 区域之一的结论一致。另外,由表1还可以看到, 1997年、1999年均具有明显的准12天周期振荡,且 均可通过 0.05 显著性水平检验,它们分别与信飞 等^[25]研究 1997 年华南前汛期降水主要以 10~20 d 准双周振荡为主、唐天毅等[26]研究 1999 年广东省汛 期降水季节内变化的主模是 10~20 d 振荡的结果一 致。

由表 2 可见,500 hPa 影响关键区能通过 0.05 显著性水平检验的主要周期也主要为准单周(5~ 8.6 d),准双周(10~20 d),虽然大多数年份 500 hPa影响关键区也存在30~60d的振荡,但只 有少数年份(1965,1987,1988,1990,1995 年)能够 通过 0.05 显著性水平检验。

因此,由上面的分析可见,广东省前汛期降水与 500 hPa关键区在大多数年份均存在显著的准单

from 1961 to 2008 in Guangdong by Fourier power spectra analysis									
年份	主要周期/d	年份	主要周期/d	年份	主要周期/d				
1961	30	1977	30*, 10*	1993	30, 12*				
1962	20, 10*, 7.5*	1978	20, 8.6*, 5.0*	1994	60, 10*				
1963	60, 12*, 6.0*	1979	15, 6.7*	1995	60, 10*				
1964	20, 8.6*, 6.0*	1980	60, 12*	1996	20*, 8.6*, 5.5*				
1965	30, 6.0*	1981	30, 10, 5.5*	1997	30, 12*, 5.0*				
1966	60, 10*, 6.0*	1982	30, 6.7	1998	20*, 6.7*				
1967	60, 10*, 5.5	1983	20*, 7.5*	1999	12*, 6.7*				
1968	60, 10*	1984	15 * , 6.7 *	2000	60, 12*, 6.7*				
1969	30, 12*, 6.7*	1985	30, 6.0*	2001	20*, 8.6*				
1970	30, 12*, 7.5*	1986	20, 10*, 5.0*	2002	30, 10*, 6.7*				
1971	12*, 6.0*	1987	60, 15, 7.5*	2003	20, 6.7*, 5.5*				
1972	15*, 6.0*	1988	60, 12*	2004	30, 10, 6.7*, 5.5*				
1973	20, 7.5*	1989	60, 10*	2005	30, 10*				
1974	30, 10*	1990	60, 15, 7.5*	2006	60, 6.0*				
1975	60, 5.5*	1991	60, $15*$, 6.0*	2007	20*, 6.7*				
1976	30, 10*	1992	30, 12, 7.5*	2008	60,12*, 6.7*				

表1 1961—2008 年 4—6 月逐日降水功率谱分析得到的 5 d 以上主要周期 Table 1 The main period above 5 days of the daily precipitation during April—June from 1961 to 2008 in Cuanadong by Fourier power sporter analysis

注:*为通过0.05显著性水平检验。

April—June from 1961 to 2008 in Guangdong by Fourier power spectra analysis								
年份	主要周期/d	年份	主要周期/d	年份	主要周期/d			
1961	20*, 7.5*	1977	60, 12*, 6.7*	1993	30, 10*			
1962	20*, 6.7*, 5.0*	1978	60, 10*, 5.0*	1994	60, 8.6*, 5.5*			
1963	20*, 6.7*, 5.0*	1979	15*, 7.5*	1995	30*, 8.6*, 6.0*			
1964	60, 15*, 5.5*	1980	60, 7.5*	1996	60, 20*, 8.6*			
1965	30*, 10*, 5.5*	1981	30, 8.6*	1997	30, 8.6*			
1966	60, 20*, 8.6*	1982	60, 10*	1998	30, 7.5*			
1967	30, 10*	1983	60	1999	60, 15*, 6.0*			
1968	30, 12*, 7.5*, 5.5*	1984	30, 5.0*	2000	30, 12*			
1969	60, 15, 7.5*	1985	60, 5.5*	2001	60, 7.5*			
1970	15 *	1986	60	2002	60, 15*, 5.0*			
1971	60, 15*, 5.0*	1987	30*, 5.5*	2003	60, 12*			
1972	30, 12*	1988	30*, 12*, 7.5*, 5.0	2004	30, 15*, 6.7*			
1973	60, 10*	1989	60, 15*, 10*	2005	60, 12*			
1974	60, 10*, 6.7*	1990	30*, 7.5*	2006	30, 5.5*			
1975	30, 12*, 6.7*	1991	30, 7.5*, 5.5*	2007	20*,6.7*			
1976	20*, 8.6*	1992	30, 15*, 5.5*	2008	60, 5.5*			

表 2 1961—2008 年 4—6 月逐日 500 hPa 关键区功率谱分析得到的 5 d 以上主要周期 Table 2 The main period above 5 days of the daily 500 hPa key region during April—June from 1961 to 2008 in Guangdong by Fourier power spectra analysis

周、准双周振荡。虽然它们也存在 30~60 d 的振荡,但不显著。

为了了解广东省前汛期降水与 500 hPa 关键区 在不同频率上的关系,对前文经过处理的广东省前 汛期降水、500 hPa 关键区逐年 4—6 月逐日序列进 一步作交叉谱分析(样本数 N=91,最大滞后长度 M=30),图 4 给出了它们之间的凝聚谱及落后时间 长度谱,它们分别反映了两个序列在各个频率上的

图 4 1961—2008 年 4—6 月逐日降水与 500 hPa 关键区的凝聚谱值与 0.05 显著性水平谱值之比 (阴影区为比值≥1 的区域,表示通过 0.05 显著性水平检验)(a)及落后时间长度(b) Fig. 4 The ratio of the coherence spectrum of the daily precipitation and index of 500 hPa key region to the spectrum with 0.05 significance level (shaded areas with the ratio≥1 passes the significance level of 0.05)(a) and their lag-temporal spectrum(b) during April—June from 1961 to 2008

相关程度及振荡超前或滞后的时间差。

由图 4a 可见,5~8.6 d 振荡除在 20 世纪 60 年 代中期、70年代后期、80年代末至90年代前期显著 外,在其余时段不显著:10~20 d 的凝聚谱值除在 60 年代后期与90年代中后期不显著外,在其余年代的 多数年份均显著:30~60 d 的凝聚谱值除在 60 年代 后期与90年代中期-2000年初不显著外,在其余年 代多数年份也显著。统计表明,1961-2008年逐年广 东省前汛期降水与 500 hPa 关键区的凝聚谱值在 5~ 8.6 d, 10~20 d 及 30~60 d 振荡尺度上通过 0.05 显 著性水平检验的数量分别为16年、23年、19年,说明 广东省前汛期降水与 500 hPa 关键区在准双周振荡 尺度上显著相关的年份最多,它们之间的关系也最密 切。由图 4b 可见,在准单周与准双周尺度上,二者超 前或滞后的时间差多数分别在1d,2d之内;而在30 ~60 d 振荡尺度上,二者超前或滞后的时间差多数为 3~9 d,少数在 2 d 以下或 10~14 d。因此,500 hPa 关键区与广东省前汛期降水在准双周振荡尺度上关 系最密切,振荡超前或落后的时间差也较小。

3.3 500 hPa 关键区准双周振荡与广东省前汛期 暴雨的关系

为了更进一步了解 500 hPa 关键区准双周振荡 与广东省前汛期降水的关系,图5给出了2000年 3-7月 500 hPa 关键区逐日距平与广东省 86 站平 均逐日降水及其10~20 d Lanczos 滤波。由图 5 可 见,两准双周滤波序列具有明显的相反变化趋势,尤 其是 500 hPa 关键区的低频波谷(波峰)与降水的低 频波峰(波谷)有较好的对应关系。相关分析表明, 两滤波序列之间的相关系数为 0.76,通过 0.001 的 显著性水平检验。2000年4-6月500hPa关键区 准双周振荡的低频波谷共出现7次(对应日期分别 为4月2日、4月14日、4月26日、5月11日、5月 21日、6月13日、6月23日),除6月23日较浅的 低频波谷无暴雨出现外,其余6次在低频波谷附近 均出现暴雨(暴雨出现的日期分别为4月2-3日、4 月 13-14 日、4 月 26 与 28 日、5 月 8-10 日、5 月 17-18日、6月11日),因此,2000年500hPa关键 区准双周振荡的低频波谷前后3d对应有暴雨的概

Fig. 5 The daily anomaly of 500 hPa key region index(a) and daily mean rainfall of Guangdong(b) with their 10—20-day Lanczos filter during March—July in 2000 (the thick dashed line is for 10—20-day Lanczos filter; the thin dashed

horizontal line denotes one standard deviation of the 10-20-day oscillation,

and number 1-5 represent the five different phases of the 10-20-day oscillation in Fig. 5a)

率为 6/7。由图 5b 还可以看到,6 月 18 日降水也存 在明显的峰值(17—18 日广东连续两天有暴雨出 现),但与 500 hPa 关键区的低频波峰(图 5a)相对 应,因此也存在 500 hPa 关键区准双周振荡低频波 峰附近出现暴雨的现象。

统计 1961—2008 年 4—6 月 500 hPa 关键区准 双周振荡(10~20 d)滤波曲线的波谷、波峰与广东 省前汛期暴雨的关系,得到如下结果:①位于低频波 谷附近前后 3 d(个别为 4 d)广东省前汛期暴雨出现 的概率为 258/328×100%≈79%;较深的低频波谷 也可能无暴雨与之对应,概率为 70/328×100%≈ 21%;②每年低频波峰附近出现暴雨约 2 次。因此, 500 hPa关键区准双周振荡的低频波谷对广东省暴 雨的中期预报有较好的参考作用。

4 500 hPa关键区准双周振荡波谷附近有、 无暴雨的大气环流场演变特征

为了在实际业务预报中更好地结合数值预报产 品做好广东省前汛期暴雨的中期天气预报,通过选 取500 hPa关键区准双周振荡波谷附近有、无暴雨的 典型个例,利用合成分析方法分析了 4—6 月 500 hPa关键区准双周振荡波谷附近有、无暴雨大气 环流场的演变特征,寻找二者的差异。

为了剔除一些不太明显的波动,选取 500 hPa 关键区各年 4—6 月准双周振荡个例的标准如下:准 双周振荡滤波曲线中波谷的振幅≥1 倍标准差,波 峰前后±1 d内无暴雨,以波谷前后 1 d内有暴雨作 为波谷附近有暴雨的典型个例;以 500 hPa 关键区 波谷前后 1 d内无中雨以上降水且±3 d内也无暴 雨作为波谷附近无暴雨的典型个例。选取了 1961—2007 年 4—6 月波谷附近有暴雨(非热带气 旋引起)的准双周振荡过程共 47 次,无暴雨 5 次。 将每个循环分为 5 个位相(图 5a),位相 1,5 为波 峰、位相 3 为波谷、位相 2(4)为由波峰(谷)向波谷 (峰)的转换位相。将有(无)暴雨的 47 次(5 次)的 所有典型个例位相 1~4 对应日期的 500 hPa 高度 场、850 hPa 风场及水汽通量矢量与水汽通量散度 场分别进行合成,可得到图 6~8。

图 6 为 500 hPa 关键区准双周振荡低频波谷附 近有暴雨的 500 hPa 高度场与 850 hPa 风场 1~4 个 位相的合成场分布。由图 6 可见,当低频波谷附近有 暴雨时,500 hPa 高度场上(图 6a~6d),中高纬度地区 从位相 2(图 6b)开始欧洲东部有较明显的高压脊隆

起,随着它的东移,到位相3(图6c)巴尔喀什湖的高 压脊明显隆起,东亚槽也明显加深,引导冷空气南下。 这种有暴雨的环流形势与华南型暴雨所需要的冷空 气多来自于西高东低环流型的东亚深槽[39] 是一致 的,与2008年广东罕见的龙舟水的大尺度环流背景 也一致[37]。低纬度地区,从位相1到位相4,孟加拉 湾北部一直维持明显的槽区,在位相3(图 6c)孟加拉 湾低槽明显加深变宽,584 dagpm 线南压到广东沿 海;位相4,随着东亚槽的东移减弱,584 dagpm 线位 于广东中北部上空,广东省上空的高度场升高,降水 减弱。850 hPa 风场上(图 6e~6h),从位相 2(图 6f) 开始,除广东省东南部沿海为副热带高压边缘转向的 西南风控制之外,广东省其余地区上空转为来自孟加 拉湾穿过中南半岛加强的西南风控制,位相 3(图 6g) 时,来自孟加拉湾穿过中南半岛的西南风继续加强, 南海中北部到广东上空均为较强的西南风场控制。 这与李真光等^[40]用 850 hPa 风场对华南前汛期大范 围暴雨进行分类所得到的第二类形势场相似,即副热 带高压脊弱或偏东,南海北部和华南沿海盛行较强 的西南季风,这一类过程的暴雨区包括了暖区暴雨、 锋前低空急流暴雨和锋面暴雨等 3 种。850 hPa 水汽 通量矢量及散度图上(图 7a~7d),位相 1,广东省上 空的水汽主要来自副热带高压边缘北上到南岭及以 北的西南暖湿气流,华南为水汽通量的辐散中心,广 东省上空的水汽通量散度值的大小介于1~2× 10^{-7} kg•hPa⁻¹•m⁻²•s⁻¹之间,降水偏少。位相 2, 除广东东南部沿海的水汽来自副热带高压边缘之外, 广东省其余地区上空的水汽均为来自孟加拉湾穿过 中南半岛的水汽输送,同时位于华南的水汽通量辐散 中心缩小,广东省东部开始出现水汽通量的辐合,使 广东省开始出现明显的降水。位相3,来自孟加拉湾 穿过中南半岛的水汽输送继续加强,并与北方冷空气 相遇,在江南一华南形成明显的水汽通量辐合,辐合 中心位于江南一广东省北部,水汽通量散度中心值达 -3×10^{-7} kg•hPa⁻¹•m⁻²•s⁻¹,导致暴雨的发生。 位相4,随着来自孟加拉湾的水汽输送减弱,广东省 中西部一广西大部分地区转为水汽汽通量的辐散区, 降水减弱。已有的研究结果[37] 也表明,广东省前汛 期多次流域性暴雨的水汽来源都具有主要源自孟加 拉湾并越过中南半岛的特征。因此,来自孟加拉湾不 断增强的西南风带来强盛的暖湿气流与来自北方的 冷空气在江南一华南形成明显的水汽通量辐合,或形 成锋面暴雨,或形成锋前急流暴雨,或形成沿海急流 暴雨[41],造成广东省明显的暴雨过程。

图 6 500 hPa 关键区准双周振荡低频波谷附近有暴雨的 500 hPa 高度场 (单位: dagpm)与 850 hPa 风场位相 1~4 的合成场分布

Fig. 6 The composition of 500 hPa geopotential height field (unit: dagpm) and 850 hPa wind field for Phase 1—4 with the torrential rain in first rainy season in Guangdong

associated with the quasi-biweekly oscillatory valleys of the 500 hPa key region index

图 7 500 hPa 关键区准双周振荡低频波谷附近有、无暴雨的 850 hPa 水汽输送(矢量,单位: kg・hPa⁻¹・m⁻¹・s⁻¹)及水汽通量散度(等值线,单位:10⁻⁷kg・hPa⁻¹・m⁻²・s⁻¹)1~4 个位相的合成场分布 Fig. 7 The composition of 850 hPa moisture flux(vectors, unit: kg・hPa⁻¹・m⁻¹・s⁻¹) and moisture flux divergence (isolines, unit: 10⁻⁷kg・hPa⁻¹・m⁻²・s⁻¹) for Phase 1—4 with or without the torrential rain in first rainy season in Guangdong associated with the quasi-biweekly oscillatory valleys of the 500 hPa key region index

图 8 为 500 hPa 关键区准双周振荡低频波谷附 近无暴雨的 500 hPa 高度场与 850 hPa 风场位相 1~

4的合成场分布。可见,500 hPa 高度场上(图 8a~8d),40°N以北的亚洲大陆从位相1到位相4

图 8 同图 6,但为无暴雨时

Fig. 8 Same as in Fig. 6, but for the case without the torrential rain in first rainy season in Guangdong associated with the quasi-biweekly oscillatory valleys of the 500 hPa key region index

 $\cdot 10 \text{ m} \cdot \text{s}^{-1}$

均维持明显的高压脊控制,冷空气活动偏北;低纬度 地区,位相1(图 8a),孟加拉湾北部为弱的低槽控制, 华南为弱脊控制;位相 2~3(图 8b~8c),随着孟加拉 湾北部低槽的东移,华南上空逐渐转为南支西风槽控 制,而孟加拉湾为弱脊控制;由 850 hPa 风场(图 8e~ 8h)可以看到,位相2(图8f),孟加拉湾为弱高压环流 控制,从中南半岛到华南上空为副热带高压边缘较强 的西南风场控制;位相3(图8g),孟加拉湾的高压环 流明显加强,副热带高压边缘较强的西南风场也继续 加强,向北可影响到华北至日本一带。850 hPa 水汽 通量矢量及散度图上(图 7e~7h),位相 1,水汽通量 的大值带主要为位于副热带高压边缘 110°E 以西的 广西一贵州一带,孟加拉湾北部有弱的水汽输送。 110°E以东、40°N以南的我国大部分地区为水汽通量 的辐散区,广东省大部分地区的水汽通量散度值在 $1 \sim 2 \times 10^{-7}$ kg • hPa⁻¹ • m⁻² • s⁻¹,降水偏少;位相 2, 孟加拉湾北部的水汽输送仍较弱, 副热带高压边缘 增强的西南风携带大量水汽使水汽通量的大值区向 北向东扩展,广东省的西北部一江南一长江流域附近 转为水汽通量的大值区。同时,南岭以北的我国东部 大部分地区转为水汽通量的辐合区,广东省东部地区 虽然位于辐合区的边缘,但无明显的水汽输送,降水 仍偏少。位相3,孟加拉湾北部输送仍明显小于来自 副热带高压边缘的水汽通量,水汽通量的辐散区开始 向北扩展,广东省整个范围内转为辐散区,不利于降 水的发生。因此,由于北方冷空气活动偏北,孟加拉 湾无明显的水汽输送,华南为副热带高压边缘较强的 西南风场控制且为水汽通量的辐散区,不利于降水特 别是暴雨的发生。

由上面的分析可见,当 500 hPa 关键区准双周振 荡低频波谷附近有暴雨时,由于东亚槽的明显加深, 引导冷空气南下,同时孟加拉湾的低槽明显加深变 宽,广东省上空为加深的高空槽控制。来自孟加拉湾 不断增强的西南风带来强盛的暖湿气流与来自北方 的冷空气在江南一华南形成明显的水汽通量辐合,造 成广东明显的暴雨过程;而当 500 hPa 关键区准双周 振荡低频波谷附近无暴雨时,由于北方冷空气活动偏 北,孟加拉湾为反气旋性环流控制,无明显的水汽输 送,华南为副热带高压边缘较强的西南风场控制且为 水汽通量的辐散区,不利于降水特别是暴雨的发生。

5 结 论

本文首先分析了近48年广东省前汛期暴雨的

变化特征,其次寻找了影响广东省前汛期降水的 500 hPa关键区,分析了广东省前汛期降水与 500 hPa关键区的低频变化特征及其关系,统计了 500 hPa关键区准双周振荡波谷的变化与广东省前 汛期暴雨的关系,最后分析了关键区准双周振荡波 谷附近广东省有、无暴雨出现的大气环流场演变特 征,得到以下主要结论:

1)每年 5—6 月是广东省前汛期暴雨的集中阶段,而 6 月则为前汛期暴雨日数出现最多的月份。 进入 20 世纪 90 年代以来,6 月发生暴雨的日数明 显增多,强度增强;但 20 世纪 90 年代后期以来,广 东省前汛期暴雨的总日数却减少;广东省前汛期的 暴雨总日数具有较明显的准 6~7 年左右的周期振 荡。广东省前汛期暴雨量占总降水量的百分比平均 为37.7%,它与总降水量呈显著的正相关。

2) 广东省前汛期降水与 20°~30°N,102.5°~ 120°E 范围内 500 hPa 高度场具有显著的高负相 关,定义此高相关区为影响广东省前汛期降水的 500 hPa 关键区;广东省前汛期降水与 500 hPa 关键 区在大多数年份均存在显著的准单周、准双周振荡。 虽然它们也存在 30~60 d 的振荡,但不显著。 500 hPa关键区与广东省前汛期降水在准双周振荡 尺度上关系最密切,振荡超前或滞后的时间差在 2 d 之内。

3) 统计近 48 年 500 hPa 关键区准双周振荡波 谷前后 3 d (个别为 4 d)广东省前汛期暴雨出现的 概率约为 79%。因此,500 hPa 关键区准双周振荡 的波谷对广东省前汛期暴雨的中期预报具有较好的 参考作用。

4)利用典型个例的合成分析,分析了 500 hPa 关键区准双周振荡波谷附近广东省有、无暴雨出现 的环流场演变特征:当 500 hPa 关键区准双周振荡 低频波谷附近有暴雨时,由于东亚槽的明显加深变宽, 广东省上空为加深的高空槽控制。来自孟加拉湾不 断增强的西南风带来强盛的暖湿气流与来自北方的 冷空气在江南一华南形成明显的水汽通量辐合,或 形成锋面暴雨,或形成锋前急流暴雨,或形成沿海急 流暴雨,造成广东省明显的暴雨过程;而当 500 hPa 关键区准双周振荡低频波谷附近无暴雨时,由于北 方冷空气活动偏北,孟加拉湾为反气旋性环流控制, 无明显的水汽输送,华南为副热带高压边缘较强的 西南风控制且为水汽通量的辐散区,不利于降水特 别是暴雨的发生。因此,二者的环流场具有明显的 差异,可为暴雨的中期业务预报参考。

致 谢:衷心感谢琚建华教授对本研究工作的指导。

参考文献

- Madden R A , Julian P R. Detection of a 40~50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci, 1971, 28: 702-708.
- [2] Madden R A , Julian P R. Description of globe scale circulation cells in the tropics with $40 \sim 50$ day period. J Atmos Sci , 1972, 29: 1109-1123.
- [3] Lau K M, Yang G J, Shen S H. Seasonal and intraseasonal climatology of summer monsoon rainfalls over East Asia. Mon Wea Rev, 1988, 116:18-37.
- [4] Mo K C. Intrasasonal modulation of summer precipitation over North America. Mon Wea Rev, 2000, 128: 1490-1505.
- [5] Krishnamurthy V, Shukla J. Intraseasonal and interannual variability of rainfall over India. J Clim, 2000, 13: 4366-4377.
- [6] Jones C, Waliser D E, Lau K M, et al. Global occurrences of extreme precipitation and the Madden-Julian Oscillation: Observations and predictability. J Clim, 2004, 17: 4575-4589.
- [7] Barlow M, Wheeler M, Lyon B, et al. Modulation of daily precipitation over southwest Asia by the Madden-Jullian Oscillation. *Mon Wea Rev*, 2005, 133: 3579-3594.
- [8] Krishnamurthy V, Shukla J. Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J Clim, 2007, 20:3-20.
- [9] Hoyos C D , Webster P J. The role of intraseasonal variability in the nature of Asian monsoon precipitation. J Clim, 2007, 20: 4402-4424.
- [10] 缪锦海,刘家铭.东亚夏季降水中 30~60 d 低频振荡.大气科 学,1991,15(5):65-71.
- [11] 杨广基.中国东部降水和风场的低频振荡特征.大气科学, 1992,16(1):103-110.
- [12] 黄菲,黄少妮,张旭.中国降水季节内振荡的气候特征分析.中 国海洋大学学报,2008,8(2):173-177.
- [13] 李崇银.华北地区汛期降水的一个分析研究.气象学报,1992, 50(1):41-49.
- [14] 陈丽臻,张先恭,陈隆勋.长江流域两个典型旱、涝年大气 30 ~60 d 低频波差异的初步分析.应用气象学报,1994,5(4): 483-488.
- [15] Yang H, Li C Y. The relation between atmospheric intraseasonal oscillation and summer severe flood and drought in the Changjing-Huanhe river basin. Adv Atmos Sci., 2003, 2(4): 540-553.
- [16] 杨信杰,罗坚,乔金明,等. 1991 年江淮暴雨与 20~25 d 低频 振荡. 气象科学, 1994, 14(4): 354-361.
- [17] 陆尔,丁一汇. 1991 年江淮特大暴雨与东亚大气低频振荡.气象学报,1996,54(6):730-736.

- [18] 毛江玉,吴国雄. 1991 年江淮梅雨与副热带高压的低频振 荡. 气象学报,2005,63(5):762-770.
- [19] 琚建华,赵尔旭.东亚夏季风区的低频振荡对长江中下游旱涝 的影响.热带气象学报,2005,21(2):163-171.
- [20] 陈晓红,张娇. 2004 年安徽省梅汛期三次暴雨过程的大气低 频振荡背景.应用气象学报,2005,16(6):754-762.
- [21] 周兵,文继芬.1998 年夏季我国东部降水与大气环流异常及 其低频特征.应用气象学报,2006,17(3):129-136.
- [22] 琚建华,孙丹,吕俊梅.东亚季风涌对我国东部大尺度降水过 程的影响分析.大气科学,2007,31(6):1129-1139.
- [23] 张瑛,陈隆勋,何金海,等. 1998年夏季亚洲地区低频大气环 流的特征及其与长江中下游降水的关系. 气象学报, 2008,66 (44):577-591.
- [24] 史学丽,丁一汇. 1994 年中国华南大范围暴雨过程的形成与 夏季风活动的研究. 气象学报,2000,58(6):666-678.
- [25] 信飞,肖子牛,李泽椿.1997 年华南汛期降水异常与大气低频 振荡的关系.气象,2007,33(12):23-30.
- [26] 唐天毅,吴池胜,王安宇,等.1999 年广东汛期降水的季节内 振荡. 热带气象学报,2007,23(6):683-689.
- [27] 朱乾根,林锦瑞,寿绍文,等.天气学原理(第四版).北京:气 象出版社,2007.
- [28] Torrence C, Gilbert P C. A practical guide to wavelet analysis. Bull Amer Meteor Soc, 1998, 79: 61-78.
- [29] 谷德军,王东晓,纪忠萍,等.墨西哥帽小波变换的影响域和计 算方案新探讨.应用气象学报,2009,20(1):62-69.
- [30] 黄嘉佑,李黄. 气象中的谱分析. 北京: 气象出版社, 1984: 13-142.
- [31] 陈兴跃,王会军,曾庆存.大气季节内振荡及其年际变化.北 京:气象出版社,2000:142-144.
- [32] 张腾飞,鲁亚斌,张杰.2000年以来云南4次强降雪过程的对 比分析.应用气象学报,2007,18(1):64-72.
- [33] 陈隆勋,朱乾根,罗会邦,等. 东亚季风. 北京:气象出版社, 1991:62-68.
- [34] 池艳珍,何金海,吴志伟.华南前汛期不同降水时段的特征分 析.南京气象学院学报,2005,28(2):163-171.
- [35] 谢炯光,纪忠萍,谷德军,等.广东省前汛期连续暴雨的气候背 景及中期环流特征.应用气象学报,2006,17(3):354-362.
- [36] 广东省气象局《广东省天气预报技术手册》编写组.广东省天 气预报技术手册.北京:气象出版社,2006:90-141.
- [37] 林良勋,吴乃庚,黄忠,等.广东 2008 年罕见"龙舟水"特点及 成因诊断分析. 气象,2009,35(4):43-50.
- [38] 彭丽英,王谦谦,马慧.华南前汛期暴雨气候特征的研究.南京 气象学院学报,2006,29(2):249-253.
- [39] 鲍名.近50年我国持续性暴雨的统计分析及其大尺度环流背 景.大气科学,2007,31(5):779-792.
- [40] 李真光,邓良焱,薛惠娴.华南前汛期大范围暴雨的合成分析. 热带气象,1988,4(2):97-106.
- [41] 《华南前汛期暴雨》编写组.华南前汛期暴雨.广州:广东科技 出版社,1986:55-58.

Variations of Torrential Rain in First Rainy Season in Guangdong Province and Its Relationships with the Biweekly Oscillation of 500 hPa Key Region

Ji Zhongping¹⁾²⁾ Gu Dejun³⁾ Wu Naigeng¹⁾ Xie Jiongguang¹⁾

¹⁾ (Guangzhou Central Weather Observatory, Guangzhou 510080)

²⁾ (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081)

 $^{\scriptscriptstyle 3)}$ (Guangzhou Institute of Tropical and Marine Meteorology,

Key Open Laboratory for Tropical Monsoon, China Meteorological Administration, Guangzhou 510080)

Abstract

In order to improve medium-range prediction of torrential rain in Guangdong Province, the variation characteristics of the torrential rain in first rainy season and their relationships with biweekly oscillation of a key region at 500 hPa geopotential height are investigated with wavelet analysis, power spectrum analysis, cross spectrum analysis and Lanczos filter using the daily precipitation data of 86 stations and rainfall regimes, and NCEP/NCAR daily data for the last 48 years of 1961-2008. The results show that torrential rain during June has increased in both the number of days and intensity since the 1990s, but the total number of torrential rain days for the season has decreased since the end of the 1990s, exhibiting significant quasi-periodic oscillations of 6-7 years. The storm rainfall accounts for 37.7% of total rainfall during Guangdong first rainy season, and is significantly positive correlated to the total rainfall. The area (20°-30°N,102. 5°—120°E) with 500 hPa geopotential height is significantly negative correlated with the daily precipitation during April—June in Guangdong, named as the 500 hPa key region. The daily precipitation during April—June in Guangdong and 500 hPa key region exhibit significant quasi-weekly (5—9 days) and quasi-bi-weekly (10-20 days) oscillations but less significant 30-60 days oscillations. The relation between 500 hPa key region and the daily precipitation during April—June in Guangdong Province in the quasi-biweekly oscillation scale is most close connected, and the lead or lag time of oscillation is within 2 days. From April to June over the 48 years, the probability of torrential rain is 79% within three or four days (in fewer cases) before or after the valleys of the quasi-biweekly oscillations in the 500 hPa key region. The characteristics of atmospheric circulation with or without torrential rain in Guangdong Province for quasibiweekly oscillatory valleys of 500 hPa key region are analyzed with the composite analysis of typical examples. When the torrential rain happens near the valleys, the cold air moves southward by significantly enhanced trough over East Asian, meanwhile, trough over the Bay of Bengal significantly deepens and widens, and torrential rain in Guangdong Province are caused by the interaction between north cold air and southwest warm and moist air brought by strong southwest flow from the Bay of Bengal. When no torrential rain happens near the valleys, the cold air acts northward, no significantly transfer of water vapor moisture transport from the Bay of Bengal, Guangdong Province is controlled by strong southwesterly at the verge of subtropical high and is located in the divergent region of moisture flux, the rainfall is weaker. All these are not conducive to the occurrence of rainfall, especially torrential rain. Therefore, the significant difference between the circulation fields can be used as reference for medium-range forecast of torrential rain in Guangdong Province.

Key words: torrential rain in first rainy season; 500 hPa key region; biweekly oscillation; medium-range forecast