2018, 29(2): 245-256.
DOI: 10.11898/1001-7313.20180210
Abstract:
Using surface and high conventional observations, radar echo data and automatic weather station data of Yantai and Qingdao, two strong convections triggered by sea-breeze front in Shandong Peninsula on 14 July 2014 and 29 June 2009 are analyzed.The convection on 14 July 2014 occurs under circulation patterns of forward-tilting trough in the back of cold vortex, where dry and cold air at middle and upper layer is strong, warm and humid air at low layer is weak, leading to obvious static instability stratification and moderate convective available potential energy.The vertical wind shear is from weak to moderate, therefore the duration of supercell is short, and the range of hail is small.The convection on 29 June 2009 appears under circulation patterns of a typical northeast cold vortex, and strong vertical wind shear is a principal factor in the maintenance of supercell.Sea-breeze front, gust front and convergence line of surface are triggering systems.The high convective available potential energy, temperature and pseudo equivalent potential temperature difference between 850 hPa and 500 hPa, average wind speed of storm bearing layer, wind indices, and potential downside indices are indicative to the intensity of convection.Both processes have supercell storms, showing similar echo characteristics, such as hanging strong echoes, weak echoes regions, echo pendency, hook echoes and mesocyclones.The difference is that there is a strong mesocyclone on 29 June 2009, while the mesocyclone on 14 July 2014 is much weaker, so the former has a larger convection range and stronger intensity.The collision process between sea-breeze front and gust front enhances the mesocyclone, and when one factor weakens the mesocyclone weakens too.Two hail processes appear in the decline phase of cell top and echo top, maximum period of a storm with maximum reflectivity.The strong radar echoes over 50 dBZ in both processes extend to much higher than the height of -20℃.Lower melting level, suitable height of 0℃, thick depth of negative temperature layer are important to large hails.In addition, the formation period of large hails are in the period of low base height, deep thickness, severe rotation intensity of mesocyclone and is simultaneous with the strong period of mesocyclone.Therefore, the size of hail is related to base height, thickness, and rotation intensity of mesocyclone.Supercell storms of two processes occur to storms of the sea-breeze front which is close to the mountains.The stronger uplift triggering caused by combination of terrain and sea-breeze front is critical to strengthen original convective storms and evolve into supercell storms.
Gao Xiaomei, Yu Xiaoding, Wang Lingjun, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. DOI: 10.11898/1001-7313.20180210