Shan Nan, He Ping, Wu Lei. The application to temperature advection retrieval based on wind profile radar data. J Appl Meteor Sci, 2016, 27(3): 323-333. DOI: 10.11898/1001-7313.20160307.
Citation: Shan Nan, He Ping, Wu Lei. The application to temperature advection retrieval based on wind profile radar data. J Appl Meteor Sci, 2016, 27(3): 323-333. DOI: 10.11898/1001-7313.20160307.

The Application to Temperature Advection Retrieval Based on Wind Profile Radar Data

More Information
  • Temperature advection is a basic physical variable in the weather prediction. It directly leads to the change of atmospheric thermal structure and further brings about the alteration of atmospheric physics field, and can reflect the development of weather systems better. In recent years, the technology of wind profile radar (WPR) improves greatly, and WPR data has both high precision and high spatial-temporal resolution and could continuously provide the distribution of horizontal winds over time. Based on the concept of temperature advection and the principle of thermal wind, retrieving the temperature advection with high precision and spatial-temporal resolution is feasible by algorithms established.The temperature advection information is retrieved from WPR data at Yanqing Station of Beijing, whose results are compared to temperature advection prediction products of Global Medium Range Forecast System of T639L60 (hereinafter, T639L60 model). A cold air invasion process on 15 Nov 2014 in the night is analyzed in detail and 6 more samples occurring from Sep to Nov in 2015 are statistically analyzed for evaluation too. Results show that the horizontal wind of the WPR is highly consistent with the wind prediction data of T639L60 model within a certain amount of prediction time (about 6 to 12 h). The order of magnitude is consistent and the value is close between the retrieval of temperature advection by the WPR data and the initial data of T639L60 model. The quality of retrieving temperature advection depends on the quality of horizontal wind profile data. Temperature advection prediction products of T639L60 model and the real-time retrieval products are accordant within a period of 6-12 h depending on the temporal scale of different weather system. The derivation gradually increases as the prediction time lengthens, sometimes even reverse prediction advection attribute may appear. Temperature advection with real-time, continuous attribute and high precision can be provided through WPR observations whose time and vertical resolution is 6 min and 120 m, respectively. And some prediction results can be calculated using the measured results by linear extrapolation in a short period. Thus, the precision of numerical forecast can be improved with WPR data assimilated in the future. Preliminary results show that the real-time 3D products and forecast products of temperature advection with high precision, spatial and temporal resolution could be generated through high quality WPR network data assimilated.
  • Fig  1.   Real-time data of wind feathers at Yanqing Station of Beijing from 1900 BT to 2100 BT on 15 Nov 2014

    Fig  2.   Wind of analysis fields by T639L60 model of 850 hPa (a) and 700 hPa (b) at 2000 BT 15 Nov 2014 in Beijing-Tianjin-Hebei region

    Fig  3.   Temperature advection at Yanqing Station of Beijing from 1900 BT 15 Nov to 0500 BT 16 Nov in 2014

    Fig  4.   Temperature advection by T639L60 model at 850 hPa and 500 hPa at 2000 BT 15 Nov 2014 in Beijing-Tianjin-Hebei region

    (a) at 850 hPa in the analysis field, (b) at 500 hPa in the analysis field, (c) at 850 hPa in the forecast field after 3 h, (d) at 500 hPa in the forecast field after 3 h, (e) at 850 hPa in the forecast field after 6 h, (f) at 500 hPa in the forecast field after 6 h, (g) at 850 hPa in the forecast field after 9 h, (h) at 500 hPa in the forecast field after 9 h

    Fig  5.   Comparison of 500 hPa (a) and 850 hPa (b) temperature advection by WPR and T639L60 model at Yanqing Station of Bejing at 2000 BT 15 Nov 2014

    Fig  6.   Comparison of temperature advection by WPR and T639L60 model at Yanqing Station of Beijing

    (a)850 hPa at 0800 BT 4 Sep 2015, (b)850 hPa at 0800 BT 11 Sep 2015, (c)850 hPa at 2000 BT 20 Oct 2015, (d)500 hPa at 0800 BT 6 Oct 2015, (e)500 hPa at 0800 BT 15 Oct 2015, (f)500 hPa at 2000 BT 17 Nov 2015

    Table  1   WPR of 700 hPa real-time wind and corresponding forecasted wind at Yanqing Station of Beijing

    时间 WPR T639L60 预报时效/h
    风速/(m·s-1) 风向/(°) 风速/(m·s-1) 风向/(°)
    2014-11-15T 20:00 8.8 247 9.6 269 0
    2014-11-15T 23:00 9.3 244 8.3 278 3
    2014-11-16T 02:00 9.6 261 4.7 313 6
    2014-11-16T 05:00 8.3 287 3.0 333 9
    DownLoad: CSV

    Table  2   WPR of 850 hPa real time wind and corresponding forecasted wind at Yanqing Station of Beijing

    时间 WPR T639L60 预报时效/h
    风速/(m·s-1) 风向/(°) 风速/(m·s-1) 风向/(°)
    2014-11-15T 20:00 7.1 270 5.6 235 0
    2014-11-15T 23:00 6.8 270 6.9 282 3
    2014-11-16T 02:00 5.7 299 9.3 311 6
    2014-11-16T 05:00 4.7 323 10.1 331 9
    DownLoad: CSV

    Table  3   WPR of 500 hPa real-time temperature advection and corresponding forecasted temperature advection at Yanqing Station of Beijing

    时间 WRP T639L60 预报时效/h
    强度/(10-4 K·s-1) 属性 强度/(10 -4 K·s -1) 属性
    2014-11-15T20:00 -2.50 -2.10 0
    2014-11-15T23:00 0.55 0.30 3
    2014-11-16T02:00 0.90 0.90 6
    2014-11-16T05:00 1.50 0.20 9
    DownLoad: CSV

    Table  4   WPR of 850 hPa real-time temperature advection and corresponding forecasted temperature advection at Yanqing Station of Beijing

    时间 WRP T639L60 预报时效/h
    强度/(10-4 K·s-1) 属性 强度/(10-4 K·s-1) 属性
    2014-11-15T20:00 0.85 0.85 0
    2014-11-15T23:00 0.55 0.25 3
    2014-11-16T02:00 -0.20 -0.20 6
    2014-11-15T05:00 0.60 -0.50 9
    DownLoad: CSV
  • 李厚楹, 孙承旬.相对广义温度平流在强对流天气分析和预报中的应用.高原气象, 1996, 8(3):363-368. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX603.013.htm
    胡明宝.风廓线雷达数据处理与应用研究.南京:南京信息工程大学, 2012:2-6.
    何平, 朱小燕, 阮征, 等.风廓线雷达探测降水过程的初步研究.应用气象学报, 2009, 20(4):465-470. DOI: 10.11898/1001-7313.200904011
    何平.相控阵风廓线雷达.北京:气象出版社, 2006.
    林晓萌, 何平, 黄兴友.一种抑制降水对风廓线雷达水平风干扰的方法.应用气象学报, 2015, 26(1):66-75. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150107&flag=1
    杨新蕊, 马舒庆, 吴蕾.UHF风廓线雷达降水数据判别方法的比较与评价.大气科学学报, 2010, 33(5):576-581. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201005009.htm
    何平, 李柏, 吴蕾, 等.确定风廓线雷达功率谱噪声功率方法.应用气象学报, 2013, 24(3):297-303. DOI: 10.11898/1001-7313.20130305
    Iwan Holleman.Quality control and verification of weather radar wind profiles.J Atmos Ocean Technol, 2005, 22:1544-1550. DOI: 10.1175/JTECH1781.1
    Paul J Neiman, Shapiro M A.Retrieving horizontal temperature gradients and advections from single-station wind profiler observations.Wea Forecasting, 1989, 4(2):222-233. DOI: 10.1175/1520-0434(1989)004<0222:RHTGAA>2.0.CO;2
    董丽萍.风廓线雷达探测资料评估与产品研究及应用.成都:成都信息工程大学, 2014.
    翟亮, 王令, 刘文军.两次降雪天气过程预报中边界层风廓线雷达资料的应用.气象科技, 2012, 40(5):783-788. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201205018.htm
    杨波, 魏东.二次开发风廓线探测资料及其在天气预报中的应用.气象科技, 2010, 38(4):413-417. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201004004.htm
    朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法.北京:气象出版社, 2007:11-49.
    范东光.用测风资料预报强降水的一种方法.气象, 1980, 6(4):11-13. DOI: 10.7519/j.issn.1000-0526.1980.04.004
    张明席.计算温度平流的另一表达式.气象, 1981, 7(3):8. DOI: 10.7519/j.issn.1000-0526.1981.03.004
    李洪勣.对温度平流计算公式的探讨.气象, 1984, 10(11):17-20. DOI: 10.7519/j.issn.1000-0526.1984.11.005
    陶祖钰, 周小刚, 郑永光, 等.天气预报的理论基础——准地转理论概要及其业务应用.气象科技进展, 2012, 2(3):6-16. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201203003.htm
    盛裴轩, 毛节泰, 李建国, 等.大气物理学.北京:北京大学出版社, 2009:36-41.
    周秀骥.高等大气物理学.北京:气象出版社, 1991:226-239.
    杨玉华, 徐祥德, 翁永辉.北京城市边界层热岛的日变化周期模拟.应用气象学报, 2003, 14(1):61-68. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030107&flag=1
    陈炯, 王建捷.北京地区夏季边界层结构日变化的高分辨模拟对比.应用气象学报, 2006, 17(4):403-410. DOI: 10.11898/1001-7313.20060403
    卞林根, 陆龙骅, 程彦杰.青藏高原东南部昌都地区近地层湍流输送的观测研究.应用气象学报, 2001, 12(1):1-13. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010101&flag=1
  • Cited by

    Periodical cited type(15)

    1. 罗敬,杨帆,谢清霞,周明飞. 基于风廓线雷达的贵州中部一次强对流天气特征分析. 山地气象学报. 2024(03): 32-39 .
    2. 李丰,阮征,王红艳,葛润生. 基于功率谱的风廓线雷达回波强度定标方法. 应用气象学报. 2021(03): 315-331 . 本站查看
    3. Xiaonan TANG,Tao HUO. Secondary Product Inversion of Wind Profile Data and Its Application in Weather Forecast. Meteorological and Environmental Research. 2021(04): 24-27+31 .
    4. 邢峰华,黄菲婷,黄彦彬,李光伟,毛志远,黄光瑞. 基于风廓线雷达的降水云分类方法在海南地区的应用. 海南大学学报(自然科学版). 2020(01): 75-83 .
    5. 宗雪梅. 预估临边探测大气温度和水汽廓线的反演精度. 应用气象学报. 2020(04): 471-481 . 本站查看
    6. 傅新姝,顾问,彭杰,麻炳欣,郭巍,王晓峰,岳彩军,张燕燕,薛昊. 2020年梅雨期上海一次强降水过程垂直结构的综合观测分析. 暴雨灾害. 2020(06): 658-665 .
    7. Huo Tao,Shan Nan,Tang Xiaonan,Fan Yu,Liu Daxin. Application of New Type of Detection Data in a Heavy Rainfall Process in Changsha. Meteorological and Environmental Research. 2019(04): 37-38+41 .
    8. 黄兴友,刘燕斐,马雷,王立志,孙建华. 雷达导出参量与南京地区降水过程演变关系诊断. 科学技术与工程. 2019(22): 34-43 .
    9. 李泽椿,谌芸,张夕迪,王月冬,代刊,张玲. 中央气象台暴雨预报业务的发展及思考. 暴雨灾害. 2019(05): 407-415 .
    10. 曾宪忠,徐岚,刘音心. 萧山风廓线雷达测风与杭州L波段雷达测风数据可用性对比分析. 科技视界. 2018(19): 224-225 .
    11. 万应虎,苏轼鹏,邬晓冬. RASS反演大气虚温的误差及修正研究. 雷达科学与技术. 2018(03): 286-290 .
    12. 王志诚,张雪芬,茆佳佳,季承荔. 地基遥感大气温湿风垂直廓线观测方法综述. 气象水文海洋仪器. 2018(02): 109-116 .
    13. 余贞寿,冀春晓,杨程,黎玥君. 同化风廓线雷达资料对浙江降水预报改进评估. 应用气象学报. 2018(01): 97-110 . 本站查看
    14. 段宇辉,孙云,张南,金晓青,张叶,杨晓亮,康增妹. 应用多源观测资料分析华北一次极端暴雨过程. 气象科技. 2018(05): 965-970 .
    15. 张寅,樊超,赵娜,沈萍. 长安风廓线雷达测风资料的可靠性验证. 干旱气象. 2017(03): 507-515 .

    Other cited types(5)

Catalog

    Figures(6)  /  Tables(4)

    Article views3814 PDF downloads639 Cited by: 20
    • Received : 2015-09-21
    • Accepted : 2016-02-02
    • Published : 2016-05-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return