Zhang Yijun, Zhang Yang. The effect research on ionosphere in response to lightning discharge during thunderstorm. J Appl Meteor Sci, 2016, 27(5): 570-576. DOI:  10.11898/1001-7313.20160506.
Citation: Zhang Yijun, Zhang Yang. The effect research on ionosphere in response to lightning discharge during thunderstorm. J Appl Meteor Sci, 2016, 27(5): 570-576. DOI:  10.11898/1001-7313.20160506.

The Effect Research on Ionosphere in Response to Lightning Discharge During Thunderstorm

DOI: 10.11898/1001-7313.20160506
  • Received Date: 2016-05-17
  • Rev Recd Date: 2016-07-05
  • Publish Date: 2016-09-30
  • Large current, strong electrostatic field and radiation field generated by lightning discharges during thunderstorm activity not only cause severe natural disaster, such as oil depot explosion, forest fire and personnel casualties on the earth surface, but also exert great effects on ionosphere which leads to the perturbation of electron intensity distribution. Lightning discharge affects ionosphere in two patterns: Direct coupling and indirect coupling. The direct coupling, which shows fast very low frequency (VLF) events in VLF reflected signal, is caused by the action of quasi-electrostatic field and electro-magnetic field generated by lightning, while the indirect coupling, which exhibits lightning induced electron precipitation (LEP) in the radiation belt, is caused by the interaction between the low frequency (LF) electromagnetic wave generated by lightning and the magnetosphere during the propagation. The amplitude of LEP is related with the current of return stroke and flash rate. The lightning discharge in thunderstorm can change the distribution of electron density from D layer to F layer, and can affect the electric field between the ionosphere and troposphere. As a result, some transient glowing, such as elves and sprite can be caused. The research of transient glowing in the middle and upper atmosphere is a hot topic. The VLF reflected signal during the electro-magnetic signal propagation of lightning discharge can be used to measure the change of ionosphere density, which is a common method to detect ionosphere disturbance. The strength of ionosphere disturbance is related with lightning discharge parameters and lightning discharge types. Many results show that positive cloud-to-ground flashes, negative cloud-to-ground with large return stroke current and discharges with large transferred charge often lead to obvious ionosphere change. Nowadays, the effect research on ionosphere in response to lightning discharge often focuses on the ionosphere bottom (often called D layer), but the observation and mechanism research of the effect on ionosphere E and F layers are still limited. As for ionosphere D, the analysis is mainly based on single point observation and simulation research, and the large scale 3-D imaging of ionosphere disturbance caused by lightning discharge needs further investigation. Effect researches on ionosphere in response to lightning discharge during thunderstorm in recent years are investigated, and the direct coupling and indirect coupling between the lightning discharge and ionosphere are introduced in detail, as well as the related phenomenon caused by the interaction between lighting discharge and ionosphere.
  • [1]
    萧佐.50年来的中国电离层物理研究.物理, 1999, 28(11):661-667. doi:  10.3321/j.issn:0379-4148.1999.11.004
    张阳, 张义军, 孟青, 等.北京地区正地闪时间分布及波形特征.应用气象学报, 2010, 21(4):442-449. doi:  10.11898/1001-7313.20100407
    Zhang Y, Zhang Y J, Zheng D, et al.Preliminary breakdown, following lightning discharge processes and lower positive charge region.Atmos Res, 2015, 161-162:52-56. doi:  10.1016/j.atmosres.2015.03.017
    Zhang Y, Zhang Y J, Li C, et al.Simultaneous optical and electrical observations of "chaotic" leaders preceding subsequent return strokes.Atmos Res, 2016, 170:131-139. doi:  10.1016/j.atmosres.2015.11.012
    Zhang Y, Zhang Y J, Xie M, et al.Characteristics and correlation of return stroke, M component and continuing current for triggered lightning.Electric Power System Research, 2016, doi: 10.1016/j.epsr.2015.11.024.
    谢盟, 张阳, 张义军, 等.两种类型M分量物理特征和机制对比.应用气象学报, 2015, 26(4):451-459. doi:  10.11898/1001-7313.20150407
    肖桐, 张阳, 吕伟涛, 等.人工触发闪电M分量的电流与电磁场特征.应用气象学报, 2013, 24(4):446-454. doi:  10.11898/1001-7313.20130407
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    张义军, 杨少杰, 吕伟涛, 等.2006—2011年广州人工触发闪电观测试验和应用.应用气象学报, 2012, 23(5):513-522. doi:  10.11898/1001-7313.20120501
    张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.11898/1001-7313.20060504
    Marshall R A, Inan U S, Glukhov V S.Elves and associated electron density changes due to cloud-to-ground and in-cloud lightning discharges.J Geophys Res, 2010, 115:A00E17. https://www.researchgate.net/profile/Robert_Marshall9/publication/241257579_Elves_and_associated_electron_density_changes_due_to_cloud-to-ground_and_in-cloud_lightning_discharges/links/53e278b00cf216e8321c4057.pdf?origin=publication_detail
    Xiao Z, Yu S M, Shi H, et al.A brief of recent research progress on ionospheric disturbances.Sci China:Info Sci, 2013, 56:122304:1-122304:9. http://info.scichina.com:8084/sciFe/EN/abstract/abstract512926.shtml
    黄文耿, 古士芬.雷暴云准静电场对夜间电离层D区的影响.地球物理学报, 2003, 46(2):162-166. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200302003.htm
    Davis C J, Lo K H.An enhancement of the ionospheric sporadic-E layer in response to negative polarity cloud-to-ground lightning.Geophys Res Lett, 2008, 35:L05815. https://www.researchgate.net/publication/251435373_An_enhancement_of_the_ionospheric_sporadic-E_layer_in_response_to_negative_polarity_cloud-to-ground_lightning
    Shao X M, Lay E H, Jacobson A R.Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm.Nature Geosicence, 2013, 6:29-33. https://www.researchgate.net/publication/258807262_Reduction_of_electron_density_in_the_night-time_lower_ionosphere_in_response_to_a_thunderstorm
    Johnson M P.VLF Imaging of Lightning-induced Ionospheric Disturbance.Stanford:Stanford University, 2000.
    Kucherov K I, Nikolaenko A P.Heating of electrons in the lower ionosphere by horizontal lightning discharges.Radio Physics and Quantum Electronics, 1979, 22(7):621-623. doi:  10.1007/BF01033573
    Lay E H, Shao X M.High temporal and spatial-resolution detection of D-layer fluctuations by using time-domain lightning waveforms.J Geophys Res, 2011, 116:A01317. https://www.researchgate.net/publication/253388931_High_temporal_and_spatial-resolution_detection_of_D-layer_fluctuations_by_using_time-domain_lightning_waveforms
    Marshall R A, Inan U S, Chevalier T W.Early VLF perturbations caused by lightning EMP-driven dissociative attachment.Geophys Res Lett, 2008, 35:L21807mdoi: 10.1029/2008GL035358.
    Marshall R AmNewsome R T, Inan U S.Fast photometric imaging using orthogonal linear arrays.IEEE Trans Geosci Remote Sens, 2008, 46(11):3885-3893. doi:  10.1109/TGRS.2008.2000824
    Inan U S, Bell T F, Rodriguez J V.Heating and ionization of the lower ionosphere by lightning.Geophys Res Lett, 1991, 18(4):705-708. doi:  10.1029/91GL00364
    郄秀书, 吕达仁, 卞建春, 等.中高层大气瞬态发光事件 (TLEs) 及可能的影响.地球科学进展, 2009, 24(3):286-296. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200903008.htm
    祝宝友, 陶善昌, 谭涌波.雷暴云顶之上的大气放电研究进展.高原气象, 2006, 25(3):549-555. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200603024.htm
    易铁铮.从雷电脉冲谱推算出低电离层等效结构.地球物理学报, 1987, 30(3):236-245. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198703002.htm
    秦子龙, 祝宝友, 吕凡超, 等.利用雷暴闪电事件监测电离层D层日间波动.科学通报, 2015, 60(7):654-663. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201507010.htm
    Rycroft M J.Inhanced energetic electron intensities at 100 km altitude and a whistler propagating through the plasmasphere.Planet Space Sci, 1973, 21(2):239-251. doi:  10.1016/0032-0633(73)90009-3
    Goldberg R A, Barcus J R, Hale L C, et al.Direct observation of magnetospheric electron precipitation stimulated by lightning.J Atmos Terr Phys, 1986, 48(3):293-299. doi:  10.1016/0021-9169(86)90105-4
    Voss H D, Imhof W L, Walt M, et al.Lightning induced electron precipitation.Nature, 1984, 312:740-742. doi:  10.1038/312740a0
    Voss H D, Walt M, Imhof W L, et al.Satellite observations of lightning-induced electron precipitation.J Geophys Res, 1998, 103:11725-11744. doi:  10.1029/97JA02878
    Blake J B, Inan U S, Walt M, et al.Lightning-induced energetic electron flux enhancements in the drift loss cone.J Geophys Res, 2001, 106(A12):29733-29744. doi:  10.1029/2001JA000067
    Inan U S, Golkowski M, Casey M K, et al.Subionospheric VLF observations of transmitter-induced precipitation of inner radiation belt electrons.Geophys Res Lett, 2007, 34:L02106, doi: 10.1029/2006GL028494.
    Helliwell R A, Katsufrakis J P, Trimpi M.Whistler-induced amplitude perturbation in VLF propagation.J Geophys Res, 1973, 78(22):4679-4688. doi:  10.1029/JA078i022p04679
    Inan U S, Shafer D C, Yip W P, et al.Subionospheric VLF signatures of nighttime D region perturbations in the vicinity of lightning discharges.J Geophys Res, 1988, 93(A10):11455-11472. doi:  10.1029/JA093iA10p11455
    Burgess W C, Inan U S.The role of ducted whistlers in the precipitation loss and equilibrium flux of radiation belt electrons.J Geophys Res, 1993, 98(A9):15643-15665. doi:  10.1029/93JA01202
    Chen J T, Inan U S, Bell T F.VLF strip holographic imaging of lightning-associated ionospheric disturbances.Radio Sci, 1996, 31(2):335-348. doi:  10.1029/95RS02079
    Johnson M P, Inan U S, Lauben D S.Subionospheric VLF signatures of oblique (nonducted) whister-induced precipitation.Geophys Res Lett, 1999, 26(23):3569-3572. doi:  10.1029/1999GL010706
    Clilverd M A, Nunn D, Lev_Tov S J, et al.Determining the size of lightning induced electron precipitation pathes.J Geophys Res, 2002, 107(A8):1168, doi: 10.1029/2001JA000301.
    Peter W B, Inan U S.Electron precipitation events driven by lightning in hurricanes.J Geophys Res, 2005, 110:A05305, doi: 10.1029/2004JA010899.
    Peter W B, Inan U S.A quantitative comparison of lightning induced electron precipitation and VLF signal perturbations.J Geophys Res, 2007, 112:A12212, doi: 10.1029/2006JA012165.
    Lauben D S, Inan U S, Bell T F.Precipitation of radiation belt electrons induced by obliquely propagating lightning-generated whistlers.J Geophys Res, 2001, 106:29745-29770. doi:  10.1029/1999JA000155
    Clilverd M A, Rodger C J, Nunn D.Radiation belt electron precipitation fluxes associated with lightning.J Geophys Res, 2004, 109:A12208, doi: 10.1029/2004JA010644.
    Rodger C J, Clilverd M A, Thomson N R, et al.Lightning driven inner radiation belt energy deposition into the atmosphere:Regional and global estimates.Ann Geophys, 2005, 23:3419-3430. doi:  10.5194/angeo-23-3419-2005
    Armstrong W C.Recent advances from studies of the Trimpi effect.Antarct J U S, 1983, 18:281-283.
    Cheng Z, Cummer S A.Broadband VLF measurements of lightning-induced ionospheric perturbations.Geophys Res Lett, 2005, 32:L08804. doi:  10.1029/2004GL022187/full
    Cheng Z, Cummer S A, Su H T, et al.Broadband very low frequency measurement of D region ionospheric perturbations caused by lightning electromagnetic pulses.J Geophys Res, 2007, 112:A06318. http://people.ee.duke.edu/~cummer/reprints/063_Cheng07_JGR_ElvePerturbations.pdf
    Inan U S.VLF heating of the lower ionosphere.Geophys Res Lett, 1990, 17(6):729-732. doi:  10.1029/GL017i006p00729
    Franz R C, Nemzek R J, Winckler J R.Television image of a large upward electrical discharge above a thunderstorm system.Science, 1990, 249:48-51. doi:  10.1126/science.249.4964.48
    Boeck W L, Vaughan O H, Blakeslee R, et al.Lightning induced brightening in the airglow layer.Geophys Res Lett, 1992, 19:99-102. doi:  10.1029/91GL03168
    Inan U S, Barrington-leigh C P, Hans S, et al.Rapid lateral expansion of optical luminosity in lightning-induced ionospheric flashes referred to as "elves".Geophys Res Lett, 1997, 24(5):583-586. doi:  10.1029/97GL00404
    Barrington-leigh C P, Inan U S.Elves triggered by positive and negative lightning discharges.Geophys Res Lett, 1999, 26 (6):683-686. doi:  10.1029/1999GL900059
    Cho M, Rycroft M.Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere.J Atmos Sol Terr Phys, 1998, 60:871-888. doi:  10.1016/S1364-6826(98)00017-0
    Wu M L, Xu J Y, Ma R P.Simulation study on elves in the lower ionosphere.Chin J Space Sci, 2006, 26(2):104-110.
    Mende S B, Frey H U, Hsu R R, et al.D region ionization by lightning-induced electromagnetic pulses.J Geophys Res, 2005, 110:A11312, doi: 10.1029/2005JA011064.
    Inan U S, Bell T F, Pasko V P, et al.VLF signatures of ionospheric disturbances associated with sprites.Geophys Res Lett, 1995, 22(24):3461-3464. doi:  10.1029/95GL03507
    Adachi T, Fukunishi H, Takahashi Y, et al.Roles of the EMP and QE field in the generation of columniform sprites.Geophys Res Lett, 2004, 31:L04107, doi: 10.1029/2003GL019081.
    Taranenko Y N, Inan U S, Bell T F.Optical signatures of lightning-induced heating of the D region.Geophys Res Lett, 1992, 19(18):1815-1818. doi:  10.1029/92GL02106
    Taranenko Y N, Inan U S, Bell T F.The interaction with the lower ionosphere of electromagnetic pulses from lightning:Heating, attachment, and ionization.Geophys Res Lett, 1993, 20(15):1539-1542. doi:  10.1029/93GL01696
    Davis C J.Lightning-induced intensification of the ionospheric sporadic E layer.Nature, 2005, 435:799-801. doi:  10.1038/nature03638
    Kumar V V.Thunderstorm-associated responses in the vertical motion of the mid-latitude F-region ionosphere.Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71:787-793. doi:  10.1016/j.jastp.2009.03.021
  • 加载中
  • -->


    Article views (3211) PDF downloads(486) Cited by()
    • Received : 2016-05-17
    • Accepted : 2016-07-05
    • Published : 2016-09-30


    DownLoad:  Full-Size Img  PowerPoint