Yang Zhongdong, Liu Jian. A review of visible infrared imaging radiometer on meteorological satellite. J Appl Meteor Sci, 2016, 27(5): 592-603. DOI: 10.11898/1001-7313.20160508.
Citation: Yang Zhongdong, Liu Jian. A review of visible infrared imaging radiometer on meteorological satellite. J Appl Meteor Sci, 2016, 27(5): 592-603. DOI: 10.11898/1001-7313.20160508.

A Review of Visible Infrared Imaging Radiometer on Meteorological Satellite

  • The development of visible infrared imaging radiometer that payload on environmental and meteorological satellites for 50 years are reviewed. 12 kinds of instruments are selected as typical representatives from nearly 100 sets of instruments run in orbit at different period. An analysis is done combined instrument functional performance specifications with application requirement. The analysis can be done from the basic strands of historical development, trend of main operational in the future and the direction of innovation and development. The development process can be divided into three stages. The first stage is the early exploration period. It is the first generation of remote sensing instrument on meteorological satellite that createds a precedent for earth observation. The second stage is the initial application period, it basically forms a stable preliminary application situation for three decades. At the same time, Europe and China begin to develop their own environmental meteorological optical remote sensing instruments. The third one is development and stable application stage. It appears a new generation visible infrared optical imaging radiometer. These instruments have some common characteristics, such as more than 20 spectrum channels with narrow bandwidth spectrum. The spectral range covers 0.4-15 μm and radiometricis accuracy. Their spatial resolution is between 200 and 1000 meters in general. Advanced instruments represent trends of visible infrared imaging radiometeron polar orbit meteorological satellite in the future. The visible infrared optical imaging radiometers on geostationary orbit meteorological satellite are characterized by about 15 typical spectral channels with narrow spectral bandwidth and the coverage of spectral range from 0.4 μm to 15 μm. The radiometric is also very high. The spatial resolution is between 500 and 2000 meters. The disk image forming speed can reach minute level and the regional area scanning can be faster.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return